
1 The properties of gases

1A The perfect gas

Answers to discussion questions

D1A.1 An equation of state is an equation that relates the variables that de�ne the
state of a system to each other. Boyle, Charles, and Avogadro established these
relations for gases at low pressures (perfect gases) by appropriate experiments.
Boyle determined how volume varies with pressure (V ∝ 1/p), Charles how
volume varies with temperature (V ∝ T), and Avogadro how volume varies
with amount of gas (V ∝ n). Combining all of these proportionalities into one
gives

V ∝
nT
p

Inserting the constant of proportionality, R, yields the perfect gas equation

V = R
nT
p

or pV = nRT

Solutions to exercises

E1A.1(a) From the inside the front cover the conversion between pressure units is: 1 atm
≡ 101.325 kPa ≡ 760 Torr; 1 bar is 105 Pa exactly.

(i) A pressure of 108 kPa is converted to Torr as follows

108 kPa ×
1 atm

101.325 kPa
×
760 Torr
1 atm

= 810 Torr

(ii) A pressure of 0.975 bar is 0.975 × 105 Pa, which is converted to atm as
follows

0.975 × 105 Pa ×
1 atm

101.325 kPa
= 0.962 atm

E1A.2(a) �e perfect gas law [1A.4–8], pV = nRT , is rearranged to give the pressure,
p = nRT/V . �e amount n is found by dividing the mass by the molar mass of
Xe, 131.29 gmol−1.

p =

n
���������������������������������������������������������������������������������������������

(131 g)
(131.29 gmol−1)

(8.2057 × 10−2 dm3 atmK−1 mol−1) × (298.15K)
1.0 dm3

= 24.4 atm
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Note the choice of R to match the units of the problem. An alternative is to
use R = 8.3154 JK−1 mol−1 and adjust the other units accordingly, to give a
pressure in Pa.

p =
[(255 × 10−3 g)/(20.18 gmol−1)] × (8.3145 JK−1 mol−1) × (122 K)

3.00 × 10−3 m3

= 4.27 × 105 Pa

where 1 dm3 = 10−3 m3 has been used along with 1 J = 1 kgm2 s−2 and 1 Pa =
1 kgm−1 s−2.

E1A.6(a) �evapour is assumed to be a perfect gas, so the gas law pV = nRT applies. �e
task is to use this expression to relate the measured mass density to the molar
mass.
First, the amount n is expressed as the massm divided by the molar massM to
give pV = (m/M)RT ; division of both sides by V gives p = (m/V)(RT/M).
�e quantity (m/V) is the mass density ρ, so p = ρRT/M, which rearranges
to M = ρRT/p; this is the required relationship between M and the density.

M =
ρRT
p
=
(3.710 kg m−3) × (8.3145 JK−1 mol−1) × ([500 + 273.15] K)

93.2 × 103 Pa
= 0.255... kgmol−1

where 1 J = 1 kgm2 s−2 and 1 Pa = 1 kgm−1 s−2 have been used. �emolarmass
of S is 32.06 gmol−1, so the number of S atoms in the molecules comprising
the vapour is (0.255... × 103 gmol−1)/(32.06 gmol−1) = 7.98. �e result is
expected to be an integer, so the formula is likely to be S8.

E1A.7(a) �e vapour is assumed to be a perfect gas, so the gas law pV = nRT applies; the
task is to use this expression to relate the measured data to the mass m. �is
is done by expressing the amount n as m/M, where M is the the molar mass.
With this substitution it follows that m = MPV/RT .
�e partial pressure of water vapour is 0.60 times the saturated vapour pressure

m =
MpV
RT

=
(18.0158 gmol−1) × (0.60 × 0.0356 × 105 Pa) × (400 m3)

(8.3145 JK−1 mol−1) × ([27 + 273.15] K)
= 6.2 × 103 g = 6.2 kg

E1A.8(a) Consider 1 m3 of air: the mass of gas is therefore 1.146 kg. If perfect gas be-
haviour is assumed, the amount in moles is given by n = pV/RT

n =
pV
RT
=

(0.987 × 105 Pa) × (1 m3)

(8.3145 JK−1 mol−1) × ([27 + 273.15] K)
= 39.5... mol

2 1 THE PROPERTIES OF GASES

So no , the sample would not exert a pressure of 20 atm, but 24.4 atm if it were
a perfect gas.

E1A.3(a) Because the temperature is constant (isothermal) Boyle’s law applies, pV =
const. �erefore the product pV is the same for the initial and �nal states

pfVf = piVi hence pi = pfVf/Vi

�e initial volume is 2.20 dm3 greater than the �nal volume soVi = 4.65+2.20 =
6.85 dm3.

pi =
Vf

Vi
× pf =

4.65 dm3

6.85 dm3 × (5.04 bar) = 3.42 bar

(i) �e initial pressure is 3.42 bar
(ii) Because a pressure of 1 atm is equivalent to 1.01325 bar, the initial pressure

expressed in atm is

1 atm
1.01325 bar

× 3.40 bar = 3.38 atm

E1A.4(a) If the gas is assumed to be perfect, the equation of state is [1A.4–8], pV = nRT .
In this case the volume and amount (in moles) of the gas are constant, so it
follows that the pressure is proportional to the temperature: p ∝ T . �e ratio
of the �nal and initial pressures is therefore equal to the ratio of the temper-
atures: pf/pi = Tf/Ti . �e pressure indicated on the gauge is that in excess
of atmospheric pressure, thus the initial pressure is 24 + 14.7 = 38.7 lb in−2.
Solving for the �nal pressure pf (remember to use absolute temperatures) gives

pf =
Tf

Ti
× pi

=
(35 + 273.15) K
(−5 + 273.15) K

× (38.7 lb in−2) = 44.4... lb in−2

�e pressure indicated on the gauge is this �nal pressure, minus atmospheric
pressure: 44.4... − 14.7 = 30 lb in−2. �is assumes that (i) the gas is behaving
perfectly and (ii) that the tyre is rigid.

E1A.5(a) �e perfect gas law pV = nRT is rearranged to give the pressure

p =
nRT
V

=

n
��������������������������������������������������������������������
255 × 10−3 g
20.18 gmol−1

×
(8.3145 × 10−2 dm3 barK−1 mol−1) × (122 K)

3.00 dm3

= 0.0427 bar
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Note: the �nal values are quite sensitive to the precision with which the inter-
mediate results are carried forward.

E1A.9(a) �evapour is assumed to be a perfect gas, so the gas law pV = nRT applies. �e
task is to use this expression to relate the measured mass density to the molar
mass.
First, the amount n is expressed as the massm divided by the molar massM to
give pV = (m/M)RT ; division of both sides by V gives p = (m/V)(RT/M).
�e quantity (m/V) is the mass density ρ, so p = ρRT/M, which rearranges
to M = ρRT/p; this is the required relationship between M and the density.

M =
ρRT
p

=
(1.23 kgm−3) × (8.3145 JK−1 mol−1) × (330 K)

20.0 × 103 Pa
= 0.169 kgmol−1

�e relationships 1 J = 1 kgm2 s−2 and 1 Pa = 1 kgm−1 s−2 have been used.

E1A.10(a) Charles’ law [1A.3b–7] states that V ∝ T at constant n and p, and p ∝ T at
constant n andV . For a �xed amount the density ρ is proportional to 1/V , so it
follows that 1/ρ ∝ T . At absolute zero the volume goes to zero, so the density
goes to in�nity and hence 1/ρ goes to zero. �e approach is therefore to plot
1/ρ against the temperature (in ○C) and then by extrapolating the straight line
�nd the temperature at which 1/ρ = 0. �e plot is shown in Fig 1.1.

θ/○C ρ/(g dm−3) (1/ρ)/(g−1 dm3)

−85 1.877 0.532 8
0 1.294 0.772 8

100 0.946 1.057 1

�e data are a good �t to a straight line, the equation of which is

(1/ρ)/(g−1 dm3) = 2.835 × 10−3 × (θ/○C) + 0.7734

�e intercept with 1/ρ = 0 is found by solving

0 = 2.835 × 10−3 × (θ/○C) + 0.7734

�is gives θ = −273 ○C as the estimate of absolute zero.

E1A.11(a) (i) �e mole fractions are

xH2 =
nH2

nH2 + nN2

=
2.0 mol

2.0 mol + 1.0 mol
= 2

3 xN2 = 1 − xH2 =
1
3

4 1 THE PROPERTIES OF GASES

(i) �e total amount inmoles is n = nO2 +nN2 . �e total massm is computed
from the amounts in moles and the molar masses M as

m = nO2 ×MO2 + nN2 ×MN2

�ese two equations are solved simultaneously for nO2 to give the follow-
ing expression, which is then evaluated using the data given

nO2 =
m −MN2n
MO2 −MN2

=
(1146 g) − (28.02 gmol−1) × (39.5... mol)
(32.00 gmol−1) − (28.02 gmol−1)

= 9.50... mol

�e mole fractions are therefore

xO2 =
nO2

n
=
9.50... mol
39.5... mol

= 0.240 xN2 = 1 − xO2 = 0.760

�e partial pressures are given by pi = xi ptot

pO2 = xO2 ptot = 0.240(0.987 bar) = 0.237 bar

pN2 = xN2 ptot = 0.760(0.987 bar) = 0.750 bar

(ii) �e simultaneous equations to be solved are now

n = nO2 + nN2 + nAr m = nO2MO2 + nN2MN2 + nArMAr

Because it is given that xAr = 0.01, it follows that nAr = n/100. �e two
unknowns, nO2 and nN2 , are found by solving these equations simultane-
ously to give

nN2 =
100m − n(MAr + 99MO2)

100(MN2 −MO2)

=
100×(1146 g)−(39.5... mol)×[(39.95 gmol−1)+99×(32.00 gmol−1)]

100 × [(28.02 gmol−1) − (32.00 gmol−1)]
= 30.8... mol

From n = nO2 + nN2 + nAr it follows that

nO2 = n − nAr − nN2

= (39.5... mol) − 0.01 × (39.5... mol) − (30.8... mol) = 8.31... mol

�e mole fractions are

xN2 =
nN2

n
=
30.8... mol
39.5... mol

= 0.780 xO2 =
nO2

n
=
8.31... mol
39.5... mol

= 0.210

�e partial pressures are

pN2 = xN2 ptot = 0.780 × (0.987 bar) = 0.770 bar

pO2 = xO2 ptot = 0.210 × (0.987 bar) = 0.207 bar
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(b) �e calculation of the pressure inside the apparatus proceeds as in (a)

p = 1.01325 × 105 Pa + (0.9971 × 103 kgm−3) × (9.806 ms−2)
× (183.2 × 10−2 m) = 1.192... × 105 Pa

�e value of R is found by rearranging the perfect gas law to R = pV/nT

R =
pV
nT
=

(1.192... × 105 Pa) × (20.000 × 10−3 m3)

[(1.485 g)/(4.003 gmol−1)] × ([500 + 273.15] K)

= 8.315 JK−1 mol−1

P1A.3 �e perfect gas law pV = nRT implies that pVm = RT , where Vm is the molar
volume (the volume when n = 1). It follows that p = RT/Vm, so a plot of p
against T/Vm should be a straight line with slope R.

However, real gases only become ideal in the limit of zero pressure, so what is
needed is a method of extrapolating the data to zero pressure. One approach is
to rearrange the perfect gas law into the form pVm/T = R and then to realise
that this implies that for a real gas the quantity pVm/T will tend to R in the limit
of zero pressure. �erefore, the intercept at p = 0 of a plot of pVm/T against p
is an estimate of R. For the extrapolation of the line back to p = 0 to be reliable,
the data points must fall on a reasonable straight line. �e plot is shown in
Fig 1.2.

p/atm Vm/(dm3 mol−1) (pVm/T)/(atm dm3 mol−1 K−1)
0.750 000 29.8649 0.082 001 4
0.500 000 44.8090 0.082 022 7
0.250 000 89.6384 0.082 041 4

0.0 0.2 0.4 0.6 0.8

0.08200

0.08202

0.08204

0.08206

p/atm

(
pV

m
/T
)/
(a
tm

dm
3
m
ol
−1

K
−1
)

Figure 1.2
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(ii) �e partial pressures are given by pi = xi ptot. �e total pressure is given
by the perfect gas law: ptot = ntotRT/V

pH2 = xH2 ptot =
2
3
×
(3.0 mol) × (8.3145 JK−1 mol−1) × (273.15 K)

22.4 × 10−3 m3

= 2.0 × 105 Pa

pN2 = xN2 ptot =
1
3
×
(3.0 mol) × (8.3145 JK−1 mol−1) × (273.15 K)

22.4 × 10−3 m3

= 1.0 × 105 Pa

Expressed in atmospheres these are 2.0 atm and 1.0 atm, respectively.
(iii) �e total pressure is

(3.0 mol) × (8.3145 JK−1 mol−1) × (273.15 K)
22.4 × 10−3 m3 = 3.0 × 105 Pa

or 3.00 atm.
Alternatively, note that 1 mol at STP occupies a volume of 22.4 dm3, which is
the stated volume. As there are a total of 3.0 mol present the (total) pressure
must therefore be 3.0 atm.

Solutions to problems

P1A.1 (a) �e expression ρgh gives the pressure in Pa if all the quantities are in
SI units, so it is helpful to work in Pa throughout. From the front cover,
760Torr is exactly 1 atm, which is 1.01325×105 Pa. �edensity of 13.55 g cm−3
is equivalent to 13.55 × 103 kgm−3.

p = pex + ρgh

= 1.01325 × 105 Pa + (13.55 × 103 kgm−3) × (9.806 ms−2)

× (10.0 × 10−2 m) = 1.15 × 105 Pa
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(ii) �e partial pressures are given by pi = xi ptot. �e total pressure is given
by the perfect gas law: ptot = ntotRT/V

pH2 = xH2 ptot =
2
3
×
(3.0 mol) × (8.3145 JK−1 mol−1) × (273.15 K)

22.4 × 10−3 m3

= 2.0 × 105 Pa

pN2 = xN2 ptot =
1
3
×
(3.0 mol) × (8.3145 JK−1 mol−1) × (273.15 K)

22.4 × 10−3 m3

= 1.0 × 105 Pa

Expressed in atmospheres these are 2.0 atm and 1.0 atm, respectively.
(iii) �e total pressure is

(3.0 mol) × (8.3145 JK−1 mol−1) × (273.15 K)
22.4 × 10−3 m3 = 3.0 × 105 Pa

or 3.00 atm.
Alternatively, note that 1 mol at STP occupies a volume of 22.4 dm3, which is
the stated volume. As there are a total of 3.0 mol present the (total) pressure
must therefore be 3.0 atm.

Solutions to problems

P1A.1 (a) �e expression ρgh gives the pressure in Pa if all the quantities are in
SI units, so it is helpful to work in Pa throughout. From the front cover,
760Torr is exactly 1 atm, which is 1.01325×105 Pa. �edensity of 13.55 g cm−3
is equivalent to 13.55 × 103 kgm−3.

p = pex + ρgh

= 1.01325 × 105 Pa + (13.55 × 103 kgm−3) × (9.806 ms−2)

× (10.0 × 10−2 m) = 1.15 × 105 Pa
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�e intercept is (p/ρ)limp→0, which is equal to RT/M.

M =
RT

(p/ρ)limp→0
=
(8.3145 JK−1 mol−1) × (298.15K)

53.96 × 103 Pa kg−1 m3
= 4.594×10−2 kgmol−1

�e estimate of the molar mass is therefore 45.94 gmol−1 .

P1A.7 (a) For a perfect gas pV = nRT so it follows that for a sample at constant
volume and temperature, p1/T1 = p2/T2. If the pressure increases by
∆p for an increase in temperature of ∆T , then with p2 = p1 + ∆p and
T2 = T1 + ∆T is follows that

p1
T1
=

p1 + ∆p
T1 + ∆T

hence ∆p = p1∆T
T1

For an increase by 1.00 K, ∆T = 1.00 K and hence

∆p = p1∆T
T1

=
(6.69 × 103 Pa) × (1.00 K)

273.16 K
= 24.5 Pa

Another way of looking at this is to write the rate of change of pressure
with temperature as

∆p
∆T
=
p1
T1
=
6.69 × 103 Pa
273.16 K

= 24.5... Pa K−1

(b) A temperature of 100.00 ○C is equivalent to an increase in temperature
from the triple point by 100.00 + 273.15 − 273.16 = 99.99 K

∆p′ = ∆T ′ × (
∆p
∆T
) = (99.99 K) × 6.69 × 103 Pa

273.16 K
= 2.44... × 103 Pa

�e �nal pressure is therefore 6.69 + 2.44... = 9.14 kPa .
(c) For a perfect gas ∆p/∆T is independent of the temperature so at 100.0 ○C

a 1.00 K rise in temperature gives a pressure rise of 24.5 Pa , just as in (a).

P1A.9 �emolarmass of SO2 is 32.06+2×16.00 = 64.06 gmol−1. If the gas is assumed
to be perfect the volume is calculated from pV = nRT

V =
nRT
p
=

n
�����������������������������������������������������������������������������������������

(
200 × 106 g
64.06 gmol−1

)
(8.3145 JK−1 mol−1) × ([800 + 273.15] K)

1.01325 × 105 Pa

= 2.7 × 105 m3

Note the conversion of the mass in t to mass in g; repeating the calculation for
300 t gives a volume of 4.1 × 105 m3 .

�e volume of gas is therefore between 0.27 km3 and 0.41 km3 .

8 1 THE PROPERTIES OF GASES

�e data fall on a reasonable straight line, the equation of which is

(pVm/T)/(atm dm3 mol−1 K−1) = −7.995 × 10−5 × (p/atm) + 0.082062

�e estimate for R is therefore the intercept, 0.082062 atm dm3 mol−1 K−1 .
�e data are given to 6 �gures, but they do not fall on a very good straight line
so the value for R has been quoted to one fewer signi�cant �gure.

P1A.5 For a perfect gas pV = nRT which can be rearranged to give p = nRT/V . �e
amount in moles is n = m/M, whereM is the molar mass andm is the mass of
the gas. �erefore p = (m/M)(RT/V). �e quantity m/V is the mass density
ρ, and hence

p = ρRT/M

It follows that for a perfect gas p/ρ should be a constant at a given temperature.
Real gases are expected to approach this as the pressure goes to zero, so a
suitable plot is of p/ρ against p; the intercept when p = 0 gives the best estimate
of RT/M. �e plot is shown in Fig. 1.3.

p/kPa ρ/(kgm−3) (p/ρ)/(kPa kg−1 m3)

12.22 0.225 54.32
25.20 0.456 55.26
36.97 0.664 55.68
60.37 1.062 56.85
85.23 1.468 58.06
101.30 1.734 58.42
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Figure 1.3

�e data fall on a reasonable straight line, the equation of which is

(p/ρ)/(kPa kg−1 m3) = 0.04610 × (p/kPa) + 53.96
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If it is assumed that p0 is one atmosphere and that H = 8 km,

p − p0 = −p0h/H = −
(1.01325 × 105 Pa) × (15 × 10−2 m)

8 × 103 m
= −2 Pa

(b) �e pressure at 11 km is calculated using the full expression

p = p0e−h/H = (1 atm) × e−(11 km)/(8 km) = 0.25 atm

P1A.13 Imagine a volume V of the atmosphere, at temperature T and pressure ptot.
If the concentration of a trace gas is expressed as X parts per trillion (ppt), it
means that if that gas were con�ned to a volume X × 10−12 ×V at temperature
T is would exert a pressure ptot. From the perfect gas law it follows that n =
pV/RT , which in this case gives

ntrace =
ptot(X × 10−12 × V)

RT

Taking the volume V to the le� gives the molar concentration, ctrace

ctrace =
ntrace

V
=
X × 10−12 × ptot

RT

An alternative way of looking at this is to note that, at a given temperature and
pressure, the volume occupied by a gas is proportional to the amount in moles.
Saying that a gas is present at X ppt implies that the volume occupied by the
gas is X ×10−12 of the whole, and therefore that the amount in moles of the gas
is X × 10−12 of the total amount in moles

ntrace = (X × 10−12) × ntot

�is is rearranged to give an expression for the mole fraction xtrace

xtrace =
ntrace

ntot
= X × 10−12

�e partial pressure of the trace gas is therefore

ptrace = xtraceptot = (X × 10−12) × ptot

�e concentration is ntrace/V = ptrace/RT , so

ctrace =
ntrace

V
=
X × 10−12 × ptot

RT

10 1 THE PROPERTIES OF GASES

P1A.11 Imagine a column of the atmosphere with cross sectional area A. �e pressure
at any height is equal to the force acting down on that area; this force arises
from the gravitational attraction on the gas in the column above this height –
that is, the ‘weight’ of the gas.
Suppose that the height h is increased by dh. �e force on the area A is reduced
because less of the atmosphere is now bearing down on this area. Speci�cally,
the force is reduced by that due to the gravitational attraction on the gas con-
tained in a cylinder of cross-sectional area A and height dh. If the density of
the gas is ρ, the mass of the gas in the cylinder is ρ × Adh and the force due to
gravity on this mass is ρgAdh, where g is the acceleration due to free fall. �e
change in pressure dp on increasing the height by dh is this force divided by
the area, so it follows that

dp = −ρgdh

�eminus sign is needed because the pressure decreases as the height increases.
�e density is related to the pressure by starting from the perfect gas equation,
pV = nRT . If the mass of gas is m and the molar mass is M, it follows that
n = m/M and hence pV = (m/M)RT . Taking the volume to the right gives
p = (m/MV)RT . �e quantity m/V is the mass density ρ, so p = (ρ/M)RT ;
this is rearranged to give an expression for the density: ρ = Mp/RT .
�is expression for ρ is substituted into dp = −ρgdh to give dp = −(Mp/RT)gdh.
Division by p results in separation of the variables (1/p)dp = −(M/RT)gdh.
�e le�-hand side is integrated between p0, the pressure at h = 0 and p, the
pressure at h. �e right-hand side is integrated between h = 0 and h

∫
p

p0

1
p
dp = ∫

h

0
−
Mg
RT

dh

[ln p]pp0 = −
Mg
RT
[h]h0

ln p
p0
= −

Mgh
RT

�e exponential of each side is taken to give

p = p0e−h/H with H =
RT
Mg

It is assumed that g and T do not vary with h.

(a) �e pressure decrease across such a small distance will be very small be-
cause h/H ≪ 1. It is therefore admissible to expand the exponential and
retain just the �rst two terms: ex ≈ 1 + x

p = p0(1 − h/H)

�is is rearranged to give an expression for the pressure decrease, p − p0

p − p0 = −p0h/H
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None of these assumptions is strictly true; however, many of them are good ap-
proximations under awide range of conditions including conditions of ambient
temperature and pressure. In particular,

(a) Molecules are subject to laws of quantum mechanics; however, for all
but the lightest gases at low temperatures, non-classical e�ects are not
important.

(b) With increasing pressure, the average distance betweenmoleculeswill de-
crease, eventually becoming comparable to the dimensions of themolecules
themselves.

(c) Intermolecular interactions, such as hydrogen bonding, and the interac-
tions of dipole moments, operate when molecules are separated by small
distances. �erefore, as assumption (2) breaks down, so does assumption
(3), because themolecules are o�en close enough together to interact even
when not colliding.

D1B.3 For an object (be it a space cra� or a molecule) to escape the gravitational
�eld of the Earth it must acquire kinetic energy equal in magnitude to the
gravitational potential energy the object experiences at the surface of the Earth.
�e gravitational potential between two objects with masses m1 and m2 when
separated by a distance r is

V = −
Gm1m2

r
where G is the (universal) gravitational constant. In the case of an object of
mass m at the surface of the Earth, it turns out that the gravitational potential
is given by

V = −
GmM
R

whereM is the mass of the Earth and R its radius. �is expression implies that
the potential at the surface is the same as if the mass of the Earth were localized
at a distance equal to its radius.
As a mass moves away from the surface of the Earth the potential energy in-
creases (becomes less negative) and tends to zero at large distances. �is change
in potential energy must all be converted into kinetic energy if the mass is to
escape. A mass m moving at speed υ has kinetic energy 1

2mυ2; this speed will
be the escape velocity υe when

1
2mυ2e =

GmM
R

hence υe =

√
2GM
R

�e quantity in the square root is related to the acceleration due to free fall,
g, in the following way. A mass m at the surface of the Earth experiences
a gravitational force given GMm/R2 (note that the force goes as R−2). �is
force accelerates the mass towards the Earth, and can be written mg. �e two
expressions for the force are equated to give

GMm
R2 = mg hence GM

R
= gR

12 1 THE PROPERTIES OF GASES

(a) At 10 ○C and 1.0 atm

cCCl3F =
XCCl3F × 10−12 × ptot

RT

=
261 × 10−12 × (1.0 atm)

(8.2057 × 10−2 dm3 atmK−1 mol−1) × ([10 + 273.15] K)

= 1.1 × 10−11 mol dm−3

cCCl2F2 =
XCCl2F2 × 10−12 × ptot

RT

=
509 × 10−12 × (1.0 atm)

(8.2057 × 10−2 dm3 atmK−1 mol−1) × ([10 + 273.15] K)

= 2.2 × 10−11 mol dm−3

(b) At 200 K and 0.050 atm

cCCl3F =
XCCl3F × 10−12 × ptot

RT

=
261 × 10−12 × (0.050 atm)

(8.2057 × 10−2 dm3 atmK−1 mol−1) × (200 K)

= 8.0 × 10−13 mol dm−3

cCCl2F2 =
XCCl2F2 × 10−12 × ptot

RT

=
509 × 10−12 × (0.050 atm)

(8.2057 × 10−2 dm3 atmK−1 mol−1) × (200 K)

= 1.6 × 10−12 mol dm−3

1B The kinetic model

Answer to discussion questions

D1B.1 �e three assumptions on which the kinetic model is based are given in Sec-
tion 1B.1 on page 11.

1. �e gas consists of molecules in ceaseless random motion obeying the
laws of classical mechanics.

2. �e size of the molecules is negligible, in the sense that their diameters
are much smaller than the average distance travelled between collisions;
they are ‘point-like’.

3. �e molecules interact only through brief elastic collisions.

An elastic collision is a collision in which the total translational kinetic energy
of the molecules is conserved.
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3. �e molecules interact only through brief elastic collisions.

An elastic collision is a collision in which the total translational kinetic energy
of the molecules is conserved.



SOLUTIONSMANUAL TO ACCOMPANY ATKINS’ PHYSICAL CHEMISTRY 15

E1B.2(a) �e rms speed is given by [1B.8–15], υrms = (3RT/M)1/2.

υrms,H2 = (
3RT
MH2

)

1/2

= (
3 × (8.3145 JK−1 mol−1) × (293.15 K)

2 × 1.0079 × 10−3 kgmol−1
)

1/2

= 1.90 km s−1

where 1 J = 1 kgm2 s−2 has been used. Note that the molar mass is in kgmol−1.

υrms,O2 = (
3 × (8.3145 JK−1 mol−1) × (293.15 K)

2 × 16.00 × 10−3 kgmol−1
)

1/2

= 478 ms−1

E1B.3(a) �e Maxwell–Boltzmann distribution of speeds, f (υ), is given by [1B.4–14].
�e fraction ofmolecules with speeds between υ1 and υ2 is given by the integral

∫
υ2

υ1
f (υ)dυ

If the range υ2 − υ1 = δυ is small, the integral is well-approximated by

f (υmid) δυ

where υmid is the mid-point of the velocity range: υmid =
1
2 (υ2 + υ1). In this

exercise υmid = 205 ms−1 and δυ = 10 ms−1.

fraction = f (υmid) δυ = 4π × (
M

2πRT
)
3/2

υ2mid exp(
−Mυ2mid
2RT

) δυ

= 4π × ( 2 × 14.01 × 10−3 kgmol−1

2π × (8.3145 JK−1 mol−1) × (400 K)
)

3/2

× (205 ms−1)2

× exp(−(2 × 14.01 × 10
−3 kgmol−1) × (205 ms−1)2

2 × (8.3145 JK−1 mol−1) × (400 K)
) × (10 ms−1)

= 6.87 × 10−3

where 1 J = 1 kgm2 s−2 has been used. �us, 0.687% of molecules have veloci-
ties in this range.

E1B.4(a) �e mean relative speed is given by [1B.11b–16], υrel = (8kT/πµ)1/2, where
µ = mAmB/(mA + mA) is the e�ective mass. Multiplying top and bottom of
the expression for υrel by NA and using NAk = R gives υrel = (8RT/πNAµ)1/2
in which NAµ is the molar e�ective mass. For the relative motion of N2 and H2
this e�ective mass is

NAµ =
MN2MH2

MN2 +MH2

=
(2 × 14.01 gmol−1) × (2 × 1.0079 gmol−1)
(2 × 14.01 gmol−1) + (2 × 1.0079 gmol−1)

= 1.88... gmol−1

υrel = (
8RT
πNAµ

)

1/2

= (
8 × (8.3145 JK−1 mol−1) × (298.15K)

π × (1.88... × 10−3 kgmol−1)
)

1/2

= 1832 ms−1

�evalue of the e�ectivemass µ is dominated by themass of the lightermolecule,
in this case H2.

14 1 THE PROPERTIES OF GASES

�is expression forGM/R is substituted into the above expression for υe to give

υe =

√
2GM
R
=
√
2Rg

�e escape velocity is therefore a function of the radius of the Earth and the
acceleration due to free fall.

�e radius of the Earth is 6.37×106 m and g = 9.81ms−2 so the escape velocity
is 1.11×104 m s−1. For comparison, themean speed ofHe at 298K is 1300ms−1
and for N2 the mean speed is 475 ms−1. For He, only atoms with a speed in
excess of eight times the mean speed will be able to escape, whereas for N2 the
speed will need to be more than twenty times the mean speed. �e fraction of
molecules with speeds many times the mean speed is small, and because this
fraction goes as e−υ

2
it falls o� rapidly as the multiple increases. A tiny fraction

of He atoms will be able to escape, but the fraction of heavier molecules with
su�cient speed to escape will be utterly negligible.

Solutions to exercises

E1B.1(a) (i) �emean speed is given by [1B.9–16], υmean = (8RT/πM)1/2, so υmean ∝√
1/M. �e ratio of the mean speeds therefore depends on the ratio of

the molar masses

υmean,H2

υmean,Hg
= (

MHg

MH2

)

1/2

= (
200.59 gmol−1

2 × 1.0079 gmol−1
)

1/2

= 9.975

(ii) �e mean translational kinetic energy ⟨Ek⟩ is given by 1
2m⟨υ

2⟩, where
⟨υ2⟩ is themean square speed, which is given by [1B.7–15], ⟨υ2⟩ = 3RT/M.
�e mean translational kinetic energy is therefore

⟨Ek⟩ =
1
2
m⟨υ2⟩ =

1
2
m (

3RT
M
)

�emolarmassM is related to themassm of onemolecule byM = mNA,
where NA is Avogadro’s constant, and the gas constant can be written R =
kNA, hence

⟨Ek⟩ =
1
2
m (

3RT
M
) =

1
2
m (

3kNAT
mNA

) =
3
2
kT

�e mean translational kinetic energy is therefore independent of the
identity of the gas, and only depends on the temperature: it is the same
for H2 and Hg.
�is result is related to the principle of equipartition of energy: amolecule
has three translational degrees of freedom (x, y, and z) each of which
contributes 1

2 kT to the average energy.
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(iii) �e collision rate is calculated as

z =
συrelp
kT

=
σ p
kT
×
√
2 × (

8RT
πM
)
1/2

=
(4.90... × 10−19 m2) × (1.01325 × 105 Pa)
(1.3806 × 10−23 JK−1) × (298.15K)

×
√
2

× (
8 × (8.3145 JK−1 mol−1) × (298.15K)

π × (2 × 14.01 × 10−3 kgmol−1)
)

1/2

= 8.10 × 109 s−1

An alternative for the calculation of z is to use [1B.13–18], λ = υrel/z,
rearranged to z = υrel/λ

z =
υrel
λ
=

√
2υmean

λ
=

√
2 × (475 ms−1)
82.9 × 10−9 m

= 8.10 × 109 s−1

E1B.8(a) �e container is assumed to be spherical with radius r and hence volume V =
4
3 πr

3. �is volume is expressed in terms the the required diameter d = 2r as
V = 1

6 πd
3. Rearrangement of this expression gives d

d = (
6V
π
)
1/3
= (

6 × 100 cm3

π
)

1/3

= 5.75... cm

�e mean free path is given by [1B.14–18], λ = kT/σ p. �is is rearranged to
give the pressure p with λ equal to the diameter of the vessel

p =
kT
σd
=
(1.3806 × 10−23 JK−1) × (298.15K)
(0.36 × 10−18 m2) × (5.75... × 10−2 m)

= 0.20 Pa

Note the conversion of the diameter from cm to m.

E1B.9(a) �emean free path is given by [1B.14–18], λ = kT/σ p.

λ =
kT
σ p
=

(1.3806 × 10−23 JK−1) × (217 K)
(0.43 × 10−18 m2) × (0.05 × 1.01325 × 105 Pa)

= 1.4 × 10−6 m = 1.4 µm

Solutions to problems

P1B.1 A rotating slotted-disc apparatus consists of a series of disks all mounted on a
common axle (sha�). Each disc has a narrow radial slot cut into it, and the slots
on successive discs are displaced from one another by a certain angle. �e discs
are then spun at a constant angular speed.

16 1 THE PROPERTIES OF GASES

E1B.5(a) �emost probable speed is given by [1B.10–16], υmp = (2RT/M)1/2, the mean
speed is given by [1B.9–16], υmean = (8RT/πM)1/2, and the mean relative
speed between two molecules of the same mass is given by [1B.11a–16], υrel =√
2υmean.

MCO2 = 12.01 + 2 × 16.00 = 44.01 gmol−1.

υmp = (
2RT
M
)
1/2
= (

2 × (8.3145 JK−1 mol−1) × (293.15 K)
44.01 × 10−3 kgmol−1

)

1/2

= 333 ms−1

υmean = (
8RT
πM
)
1/2
= (

8 × (8.3145 JK−1 mol−1) × (293.15 K)
π × (44.01 × 10−3 kgmol−1)

)

1/2

= 376 ms−1

υrel =
√
2υmean =

√
2 × (376 ms−1) = 531 ms−1

E1B.6(a) �e collision frequency is given by [1B.12b–17], z = συrelp/kT , with the relative
speed for two molecules of the same type given by [1B.11a–16], υrel =

√
2υmean.

�e mean speed is given by [1B.9–16], υmean = (8RT/πM)1/2. From the Re-
source section the collision cross-section σ is 0.27 nm2.

z =
συrelp
kT

=
σ p
kT
×
√
2 × (8RT

πM
)
1/2

=
(0.27 × 10−18 m2) × (1.01325 × 105 Pa)
(1.3806 × 10−23 JK−1) × (298.15K)

×
√
2

× (
8 × (8.3145 JK−1 mol−1) × (298.15K)
π × (2 × 1.0079 × 10−3 kgmol−1)

)

1/2

= 1.7 × 1010 s−1

where 1 J = 1 kgm2 s−2 and 1 Pa = 1 kgm−1 s−2 have been used. Note the
conversion of the collision cross-section σ to m2: 1 nm2 = (1 × 10−9)2 m2 =
1 × 10−18 m2.

E1B.7(a) �e mean speed is given by [1B.9–16], υmean = (8RT/πM)1/2. �e collision
frequency is given by [1B.12b–17], z = συrelp/kT , with the relative speed for
twomolecules of the same type given by [1B.11a–16], υrel =

√
2υmean. �emean

free path is given by [1B.14–18], λ = kT/σ p

(i) �e mean speed is calculated as

υmean = (
8RT
πM
)
1/2
= (

8 × (8.3145 JK−1 mol−1) × (298.15K)
π × (2 × 14.01 × 10−3 kgmol−1)

)

1/2

= 475 ms−1

(ii) �e collision cross-section σ is calculated from the collision diameter d
as σ = πd2 = π × (395 × 10−9 m)2 = 4.90... × 10−19 m2. With this value
the mean free path is calculated as

λ =
kT
σ p
=

(1.3806 × 10−23 JK−1) × (298.15K)
(4.90... × 10−19 m2) × (1.01325 × 105 Pa)

= 82.9×10−9 m = 82.9 nm

where 1 J = 1 kgm2 s−2 and 1 Pa = 1 kgm−1 s−2 have been used.
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ν/Hz υx/ms−1 υ2x/(104 m2 s−2) I(40 K) ln I(40 K) I(100 K) ln I(100 K)
20 36 0.13 0.846 −0.167 0.592 −0.524
40 72 0.52 0.513 −0.667 0.485 −0.724
80 144 2.07 0.069 −2.674 0.217 −1.528
100 180 3.24 0.015 −4.200 0.119 −2.129
120 216 4.67 0.002 −6.215 0.057 −2.865

0 1 2 3 4 5

−6.0

−4.0

−2.0

0.0

υ2x/(104 m2 s−2)

ln
I

T = 40 K
T = 100 K

Figure 1.4

At both temperatures the data fall on reasonable straight lines, with slope−1.33
at 40 K and −0.516 at 100 K.
If the Maxwell–Boltzmann distribution applies the expected slope at 40 K is
computed as

−
m
2kT

= −
M
2RT

= −
83.80 × 10−3 kgmol−1

2 × (8.3145 JK−1 mol−1) × (40 K)
= −1.26 × 10−4 m−2 s2

where R = NAk has been used. �e expected slope of the above graph is there-
fore −1.26, which compares reasonably well with that found experimentally.
At 100 K the expected slope is

−
83.80 × 10−3 kgmol−1

2 × (8.3145 JK−1 mol−1) × (100 K)
= −5.04 × 10−5 m−2 s2

Again, the expected slope −0.504 compares reasonably well with that found
experimentally.

P1B.3 �e Maxwell–Boltzmann distribution of speeds in one dimension (here x) is
given by [1B.3–13]

f (υx) = (
m

2πkT
)
1/2

e−mυ2x/2kT

18 1 THE PROPERTIES OF GASES

Source

Selector

Detector

Imagine amolecule moving along the direction of the axle with a certain veloc-
ity such that it passes through the slot in the �rst disc. By the time themolecule
reaches the second disc the slot in that disc will have moved around, and the
molecule will only pass through the slot if the speed of the molecule is such
that it arrives at the second disc at just the time at which the slot appears in
the path of the molecule. In this way, only molecules with a speci�c velocity
(or, because the slot has a �nite width, a small range of velocities) will pass
through the second slpt. �e velocity of the molecules which will pass through
the second disc is set by the angular speed at which the discs are rotated and
the angular displacement of the slots on successive discs.
�e angular velocity of the discs is 2πv rad s−1 so in time t the discs move
through an angle θ = 2πvt. If the spacing of the discs is d, a molecule with
velocity υx will take time t = d/υx to pass from one disc to the next. If the
second slit is set at an angle α relative to the �rst, such amolecule will only pass
through the second slit if

2πv ( d
υx
) = α hence υx =

2πvd
α

If the angle α is expressed in degrees, α = π(α○/180○), this rearranges to

υx =
2πvd

π(α○/180○)
=
360○vd
α○

With the values given the velocity of the molecules is computed as

υx =
360○vd
α○

=
360○v(0.01 m)

2○
= 180v(0.01 m)

�e Maxwell–Boltzmann distribution of speeds in one dimension is given by
[1B.3–13]

f (υx) = (
m

2πkT
)
1/2

e−mυ2x/2kT

�e given data on the intensity of the beam is assumed to be proportional to
f (υx): I ∝ f (υx) = Af (υx). Because the constant of proportionality is not
known and the variation with υx is to be explored, it is convenient to take
logarithms to give

ln I = ln[Af (υx)] = lnA+ ln(
m

2πkT
)
1/2
−
mυ2x
2kT

A plot of ln I against υ2x is expected to be a straight line with slope −m/2kT ;
such a plot is shown in Fig. 1.4.
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40 72 0.52 0.513 −0.667 0.485 −0.724
80 144 2.07 0.069 −2.674 0.217 −1.528
100 180 3.24 0.015 −4.200 0.119 −2.129
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Figure 1.4

At both temperatures the data fall on reasonable straight lines, with slope−1.33
at 40 K and −0.516 at 100 K.
If the Maxwell–Boltzmann distribution applies the expected slope at 40 K is
computed as

−
m
2kT

= −
M
2RT

= −
83.80 × 10−3 kgmol−1

2 × (8.3145 JK−1 mol−1) × (40 K)
= −1.26 × 10−4 m−2 s2
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−
83.80 × 10−3 kgmol−1

2 × (8.3145 JK−1 mol−1) × (100 K)
= −5.04 × 10−5 m−2 s2
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P1B.3 �e Maxwell–Boltzmann distribution of speeds in one dimension (here x) is
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f (υx) = (
m

2πkT
)
1/2

e−mυ2x/2kT

18 1 THE PROPERTIES OF GASES
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known and the variation with υx is to be explored, it is convenient to take
logarithms to give

ln I = ln[Af (υx)] = lnA+ ln(
m

2πkT
)
1/2
−
mυ2x
2kT

A plot of ln I against υ2x is expected to be a straight line with slope −m/2kT ;
such a plot is shown in Fig. 1.4.



SOLUTIONSMANUAL TO ACCOMPANY ATKINS’ PHYSICAL CHEMISTRY 21

P1B.5 �e Maxwell–Boltzmann distribution of speeds in three dimensions is given
by [1B.4–14]

f (υ) = 4π (
M

2πRT
)
3/2

υ2e−Mυ2/2RT

withM the molar mass. �e most probable speed is given by [1B.10–16], υmp =

(2RT/M)1/2. If the interval of speeds, ∆υ is small, the fraction of molecules
with speeds in this range, centred at speed υmp iswell-approximated by f (υmp)∆υ.
�e required fraction of molecules with speeds in the range ∆υ around n×υmp
compared to that centred around υmp is given by

f (n × υmp)∆υ
f (υmp)∆υ

=
(n × υmp)

2

υ2mp

e−M(nυmp)2/2RT

e−Mυ2mp/2RT
= n2e−Mυ2mp(n

2−1)/2RT

In taking the ratio, with the exception of the term υ2, all of the terms in f (υ)
which multiply the exponential cancel. In this expression the term υmp is re-
placed by (2RT/M)1/2 to give

f (n × υmp)∆υ
f (υmp)∆υ

= n2e−Mυ2mp(n
2−1)/2RT = n2e−M(2RT/M)(n

2−1)/2RT = n2e(1−n
2)

For n = 3 this expression evaluates to 3.02 × 10−3 and for n = 4 it evaluates
to 4.89 × 10−6 . �ese numbers indicate that very few molecules have speeds
several times greater than the most probable speed.

P1B.7 �e key idea here is that for an object to escape the gravitational �eld of the
Earth it must acquire kinetic energy equal in magnitude to the gravitational
potential energy the object experiences at the surface of the Earth. �e grav-
itational potential energy between two objects with masses m1 and m2 when
separated by a distance r is

V = −
Gm1m2

r
where G is the (universal) gravitational constant. In the case of an object of
mass m at the surface of the Earth, it turns out that the gravitational potential
energy is given by

V = −
GmM
R

whereM is the mass of the Earth and R its radius. �is expression implies that
the potential at the surface is the same as if the mass of the Earth were localized
at a distance equal to its radius.
As a mass moves away from the surface of the Earth the potential energy in-
creases (becomes less negative) and tends to zero at large distances. If the mass
is to escape its kinetic energy must be greater than or equal to this change in
potential energy. A mass m moving at speed υ has kinetic energy 1

2mυ2; this
speed will be the escape velocity υe when

1
2mυ2e =

GmM
R

hence υe = (
2GM
R
)
1/2

20 1 THE PROPERTIES OF GASES

�e �rst task is to �nd an expression for the mean speed, which is found using
[1B.6–15], ⟨υn⟩ = ∫

∞
0 υn f (υ)dυ. In this case

⟨υx⟩ = ∫
∞

0
υx (

m
kT
)
1/2

e−mυ2x/2kT dυ

�e required integral is of the form of G.2 from the Resource section

∫
∞

0
xe−ax

2
dx =

1
2a

With a = m/2kT the mean speed is

υmean = ⟨υx⟩ = (
m
kT
)
1/2
(

1
2(m/2kT)

) = (
kT
2πm

)
1/2

A�er the beam emerges from the velocity selector, f (υx) is zero for υx > υmean.
�eprobability distribution is therefore changed and soneeds to be re-normalized
such that

Kx ∫
υmean

0
e−mυ2x/2kT dυx = 1

�is integral is best evaluated using mathematical so�ware which gives

∫
υmean

0
e−mυ2x/2kT dυ = (πkT

2m
)
1/2

erf( 1
2
√
π
)

where erf(x) is the error function. �e normalized distribution is therefore

fnew(υx) = (
2m
πkT
)
1/2 1

erf( 1
2
√
π )

e−mυ2x/2kT

�e newmean speed is computed using this distribution; again this intergral is
best evaluated using mathematical so�ware. Note that the integral extends up
to υmean

υmean, new = (
2m
πkT
)
1/2 1

erf( 1
2
√
π )
∫

υmean

0
υxe−mυ2x/2kT dυx

= (1 − e1/4π)(2kT
πm
)
1/2 1

erf( 1
2
√
π )
= (1 − e1/4π)2

υmean
������������������������������������������

(
kT
2πm

)
1/2 1

erf( 1
2
√
π )

= (1 − e1/4π)2υmean
1

erf( 1
2
√
π )

�e error function is evaluated numerically to give υmean, new ≈ 0.493 υmean .
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such that
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√
π )
∫

υmean

0
υxe−mυ2x/2kT dυx
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√
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������������������������������������������
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√
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�e error function is evaluated numerically to give υmean, new ≈ 0.493 υmean .
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planet υe/ms−1 T/104 K (H2) T/104 K (He) T/104 K (O2)

Earth 1.12 × 104 1.19 2.36 18.9
Mars 5.04 × 103 0.242 0.481 3.84

�e fraction ofmolecules with speed greater than υe is found by integrating the
Maxwell–Boltzmann distribution from this speed up to in�nity:

fraction with speed ≥ υe = F = ∫
∞

υe
4π (

M
2πRT

)
3/2

υ2e−Mυ2/2RT dυ

�is integral is best computed using mathematical so�ware, to give the fol-
lowing results for the fraction F; an entry of zero indicates that the calculated
fraction is zero to within the machine precision.

planet T/K F(H2) F(He) F(O2)

Earth 240 0 0 0
1500 1.49 × 10−4 9.52 × 10−9 0

Mars 240 1.12 × 10−5 5.09 × 10−11 0
1500 0.025 4.31 × 10−2 4.61 × 10−14

�ese results indicate that the lighter molecules have the greater chance of
escaping (because they are moving faster on average) and that increasing the
temperature increases the probability of escaping (again becuase this increases
the mean speed). Escape from Mars is easier than from the Earth because of
the lower escape velocity, and heavier molecules are seemingly very unlikely to
escape from the Earth.

P1B.9 �e Maxwell–Boltzmann distribution of speeds in three dimensions is given
by [1B.4–14]

f (υ) = 4π ( M
2πRT

)
3/2

υ2e−Mυ2/2RT

�e fraction with speed between υ1 and υ2 is found by integrating the distri-
bution between these speeds; this is best done using mathematical so�ware

fraction with speed between υ1 and υ2 = ∫
υ2

υ1
4π (

M
2πRT

)
3/2

υ2e−Mυ2/2RT dυ

At 300 K and with M = 2 × 16.00 gmol−1 the fraction is 0.0722 and at 1000 K
the fraction is 0.0134 .

P1B.11 Two hard spheres will collide if their line of centres approach within 2r of one
another, where r is the radius of the sphere. �is distance de�nes the collision
diameter, d = 2r, and the collision cross-section is the area of a circle with this
radius, σ = πd2 = π(2r)2. �e pressure is computed from the other parameters
using the perfect gas law: p = nRT/V .

22 1 THE PROPERTIES OF GASES

�e quantity in the square root is related to the acceleration due to free fall,
g, in the following way. A mass m at the surface of the Earth experiences
a gravitational force given GMm/R2 (note that the force goes as R−2). �is
force accelerates the mass towards the Earth, and can be written mg. �e two
expressions for the force are equated to give

GMm
R2 = mg hence

GM
R
= gR (1.1)

�is expression forGM/R is substituted into the above expression for υe to give

υe = (
2GM
R
)
1/2
= (2Rg)1/2

�e escape velocity is therefore a function of the radius of the Earth and the
acceleration due to free fall.
�e quoted values for the Earth give

υe =
√
2Rg =

√
2 × (6.37 × 106 m) × (9.81 ms−2) = 1.12 × 104 m s−1

For Mars, data is not given on the acceleration due to free fall. However, it
follows from eqn 1.1 that g = GM/R2, and hence

gMars

gEarth
=

MMars

MEarth
(
REarth

RMars
)
2

�e acceleration due to freefall on Mars is therefore computed as

gMars = gEarth
MMars

MEarth
(
REarth

RMars
)
2

= (9.81 ms−2) × (0.108) × (6.37 × 10
6 m

3.38 × 106 m
)

2

= 3.76... m s−2

�e escape velocity on Mars is therefore

υe =
√
2Rg =

√
2 × (3.38 × 106 m) × (3.76... m s−2) = 5.04 × 103 m s−1

�e mean speed is given by [1B.9–16], υmean = (8RT/πM)1/2. �is expression
is rearranged to give the temperature T at which the mean speed is equal to the
escape velocity

T =
υ2eπM
8R

For H2 on the Earth the calculation is

T =
(1.12 × 104 m s−1)2 × π × (2 × 1.0079 × 10−3 kgmol−1)

8 × (8.3145 JK−1 mol−1)
= 1.19 × 104 K

�e following table gives the results for all three gases on both planets
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can decrease with temperature. �is variation of the attractive interaction with
temperature can be accounted for in the equation of state by replacing the van
der Waals a with a/T .

Solutions to exercises

E1C.1(a) �e van der Waals equation of state in terms of the volume is given by [1C.5a–
23], p = nRT/(V − b) − an2/V 2. �e parameters a and b for ethane are
given in the Resource section as a = 5.507 atmdm6 mol−2 and b = 6.51 ×
10−2 dm3 mol−1.
With these units it is convenient to use R = 8.2057 × 10−2 dm3 atmK−1 mol−1.

(i) T = 273.15 K, V = 22.414 dm3, n = 1.0 mol

p =
nRT

V − nb
−
an2

V 2

=
(1.0 mol) × (8.2057 × 10−2 dm3 atmK−1 mol−1) × (273.15 K)
(22.414 dm3) − (1.0 mol) × (6.51 × 10−2 dm3 mol−1)

−
(5.507 atmdm6 mol−2) × (1.0 mol)2

(22.414 dm3)2
= 0.99 atm

(ii) T = 1000 K, V = 100 cm3 = 0.100 dm3, n = 1.0 mol

p =
nRT

V − nb
−
an2

V 2

=
(1.0 mol) × (8.2057 × 10−2 dm3 atmK−1 mol−1) × (1000 K)
(0.100 dm3) − (1.0 mol) × (6.51 × 10−2 dm3 mol−1)

−
(5.507 atmdm6 mol−2) × (1.0 mol)2

(0.100 dm3)2
= 1.8 × 103 atm

E1C.2(a) Recall that 1 atm = 1.01325×105 Pa, 1 dm6 = 10−6 m6, and 1 Pa = 1 kgm−1 s−2

a = (0.751 atmdm6 mol−2) ×
1.01325 × 105 Pa

1 atm
×
10−6 m6

1 dm6 = 0.0761 Pam
6 mol−2

= 0.0760 kgm−1 s−2 m6 mol−2 = 0.0761 kgm5 s−2 mol−2

b = (0.0226 dm3 mol−1) × 10−3 m3

1 dm3 = 2.26 × 10−5 m3 mol−1

E1C.3(a) �e compression factor Z is de�ned in [1C.1–20] as Z = Vm/V○m, where V○m is
the molar volume of a perfect gas under the same conditions. �is volume is
computed from the equation of state for a perfect gas, [1A.4–8], as V○m = RT/p,
hence Z = pVm/RT [1C.2–20].

24 1 THE PROPERTIES OF GASES

�e collision frequency is given by [1B.12b–17], z = συrelp/kT , with the relative
speed for two molecules of the same type given by [1B.11a–16], υrel =

√
2υmean.

�e mean speed is given by [1B.9–16], υmean = (8RT/πM)1/2.
Putting this all together gives

z =
συrelp
kT

=
π(2r)2

kT
×
√
2 × (

8RT
πM
)
1/2
×
nRT
V

= π(2r)2 ×
√
2 × (

8RT
πM
)
1/2
×
nNA

V

where to go to the second line R = NAk has been used. �e expression is
evaluated to give

z = π(2×(0.38 × 10−9 m))2×
√
2×(8×(8.3145 JK

−1 mol−1)×(298.15 K)
π×(16.0416 × 10−3 kgmol−1)

)

1/2

×
(0.1 mol) × (6.0221 × 1023 mol−1)

1 × 10−3 m3 = 9.7 × 1010 s−1

1C Real gases

Answer to discussion questions

D1C.1 Consider three temperature regions:

(1) T < TB. At very low pressures, all gases show a compression factor, Z ≈ 1.
At high pressures, all gases have Z > 1, signifying that they have a molar
volume greater than a perfect gas, which implies that repulsive forces are
dominant. At intermediate pressures, most gases show Z < 1, indicating
that attractive forces reducing the molar volume below the perfect value
are dominant.

(2) T ≈ TB. Z ≈ 1 at low pressures, slightly greater than 1 at intermediate
pressures, and signi�cantly greater than 1 only at high pressures. �ere is a
balance between the attractive and repulsive forces at low to intermediate
pressures, but the repulsive forces predominate at high pressures where
the molecules are very close to each other.

(3) T > TB. Z > 1 at all pressures because the frequency of collisions between
molecules increases with temperature.

D1C.3 �e van der Waals equation ‘corrects’ the perfect gas equation for both at-
tractive and repulsive interactions between the molecules in a real gas; see
Section 1C.2 on page 23 for a fuller explanation.
�e Berthelot equation accounts for the volume of the molecules in a manner
similar to the van der Waals equation but the term representing molecular
attractions is modi�ed to account for the e�ect of temperature. Experimentally
it is found that the van der Waals parameter a decreases with increasing tem-
perature. �eory (see Focus 14) also suggests that intermolecular attractions
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can decrease with temperature. �is variation of the attractive interaction with
temperature can be accounted for in the equation of state by replacing the van
der Waals a with a/T .

Solutions to exercises

E1C.1(a) �e van der Waals equation of state in terms of the volume is given by [1C.5a–
23], p = nRT/(V − b) − an2/V 2. �e parameters a and b for ethane are
given in the Resource section as a = 5.507 atmdm6 mol−2 and b = 6.51 ×
10−2 dm3 mol−1.
With these units it is convenient to use R = 8.2057 × 10−2 dm3 atmK−1 mol−1.

(i) T = 273.15 K, V = 22.414 dm3, n = 1.0 mol

p =
nRT

V − nb
−
an2

V 2

=
(1.0 mol) × (8.2057 × 10−2 dm3 atmK−1 mol−1) × (273.15 K)
(22.414 dm3) − (1.0 mol) × (6.51 × 10−2 dm3 mol−1)

−
(5.507 atmdm6 mol−2) × (1.0 mol)2

(22.414 dm3)2
= 0.99 atm

(ii) T = 1000 K, V = 100 cm3 = 0.100 dm3, n = 1.0 mol

p =
nRT

V − nb
−
an2

V 2

=
(1.0 mol) × (8.2057 × 10−2 dm3 atmK−1 mol−1) × (1000 K)
(0.100 dm3) − (1.0 mol) × (6.51 × 10−2 dm3 mol−1)

−
(5.507 atmdm6 mol−2) × (1.0 mol)2

(0.100 dm3)2
= 1.8 × 103 atm

E1C.2(a) Recall that 1 atm = 1.01325×105 Pa, 1 dm6 = 10−6 m6, and 1 Pa = 1 kgm−1 s−2

a = (0.751 atmdm6 mol−2) ×
1.01325 × 105 Pa

1 atm
×
10−6 m6

1 dm6 = 0.0761 Pam
6 mol−2

= 0.0760 kgm−1 s−2 m6 mol−2 = 0.0761 kgm5 s−2 mol−2

b = (0.0226 dm3 mol−1) × 10−3 m3

1 dm3 = 2.26 × 10−5 m3 mol−1

E1C.3(a) �e compression factor Z is de�ned in [1C.1–20] as Z = Vm/V○m, where V○m is
the molar volume of a perfect gas under the same conditions. �is volume is
computed from the equation of state for a perfect gas, [1A.4–8], as V○m = RT/p,
hence Z = pVm/RT [1C.2–20].
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�e collision frequency is given by [1B.12b–17], z = συrelp/kT , with the relative
speed for two molecules of the same type given by [1B.11a–16], υrel =

√
2υmean.

�e mean speed is given by [1B.9–16], υmean = (8RT/πM)1/2.
Putting this all together gives

z =
συrelp
kT

=
π(2r)2

kT
×
√
2 × (

8RT
πM
)
1/2
×
nRT
V

= π(2r)2 ×
√
2 × (

8RT
πM
)
1/2
×
nNA

V

where to go to the second line R = NAk has been used. �e expression is
evaluated to give

z = π(2×(0.38 × 10−9 m))2×
√
2×(8×(8.3145 JK

−1 mol−1)×(298.15 K)
π×(16.0416 × 10−3 kgmol−1)

)

1/2

×
(0.1 mol) × (6.0221 × 1023 mol−1)

1 × 10−3 m3 = 9.7 × 1010 s−1

1C Real gases

Answer to discussion questions

D1C.1 Consider three temperature regions:

(1) T < TB. At very low pressures, all gases show a compression factor, Z ≈ 1.
At high pressures, all gases have Z > 1, signifying that they have a molar
volume greater than a perfect gas, which implies that repulsive forces are
dominant. At intermediate pressures, most gases show Z < 1, indicating
that attractive forces reducing the molar volume below the perfect value
are dominant.

(2) T ≈ TB. Z ≈ 1 at low pressures, slightly greater than 1 at intermediate
pressures, and signi�cantly greater than 1 only at high pressures. �ere is a
balance between the attractive and repulsive forces at low to intermediate
pressures, but the repulsive forces predominate at high pressures where
the molecules are very close to each other.

(3) T > TB. Z > 1 at all pressures because the frequency of collisions between
molecules increases with temperature.

D1C.3 �e van der Waals equation ‘corrects’ the perfect gas equation for both at-
tractive and repulsive interactions between the molecules in a real gas; see
Section 1C.2 on page 23 for a fuller explanation.
�e Berthelot equation accounts for the volume of the molecules in a manner
similar to the van der Waals equation but the term representing molecular
attractions is modi�ed to account for the e�ect of temperature. Experimentally
it is found that the van der Waals parameter a decreases with increasing tem-
perature. �eory (see Focus 14) also suggests that intermolecular attractions
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�e compression factor Z is given in terms of themolar volume and pres-
sure by [1C.2–20], Z = pVm/RT . �e molar volume is V/n

Z =
pVm

RT
=

pV
nRT

=
(35.2... atm) × (4.860 dm3)

(10.0 mol) × (8.2057 × 10−2 dm3 atmK−1 mol−1) × (300.15 K)
= 0.695

E1C.6(a) �e relation between the critical constants and the van der Waals parameters
is given by [1C.6–26]

Vc = 3b pc =
a

27b2
Tc =

8a
27Rb

All three critical constants are given, so the problem is over-determined: any
pair of the these expressions is su�cient to �nd values of a and b. It is con-
venient to use R = 8.2057 × 10−2 dm3 atmK−1 mol−1 and volumes in units of
dm3.
If the expressions for Vc and pc are used, a and b are found in the following
way

Vc = 3b hence b = Vc/3 = (0.0987 dm3 mol−1)/3 = 0.0329 dm3 mol−1

pc =
a

27b2
=

a
27(Vc/3)2

hence a = 27(Vc/3)2pc

a = 27(Vc/3)2pc = 27([0.0987 dm3 mol−1]/3)2 × (45.6 atm)
= 1.33 atmdm6 mol−2

�ere are three possible ways of choosing two of the expressions with which to
�nd a and b, and each choice gives a di�erent value. For a the values are 1.33,
1.74, and 2.26, giving an average of 1.78 atmdm6 mol−2 . For b the values are
0.0329, 0.0329, and 0.0429, giving an average of 0.0362 dm3 mol−1 .
In Section 1C.2(a) on page 23 it is argued that b = 4VmolecNA, where Vmolec is
the volume occupied by one molecule. �is volume is written in terms of the
radius r as 4πr3/3 so it follows that r = (3b/16πNA)

1/3.

r = (
3b

16πNA
)
1/3
= (

3 × (0.0362 dm3 mol−1)
16π × (6.0221 × 1023 mol−1)

)

1/3

= 1.53×10−9 dm = 153 pm

E1C.7(a) (i) In Section 1C.1(b) on page 20 it is explained that at the Boyle temperature
Z = 1 and dZ/dp = 0; this latter condition corresponds to the second
virial coe�cient, B or B′, being zero. �e task is to �nd the relationship
between the van derWaals parameters and the virial coe�cients, and the
starting point for this is the expressions for the product pVm is each case
([1C.5b–24] and [1C.3b–21])

van der Waals: p = RT
(Vm − b)

−
a
V 2
m

hence pVm =
RTVm

(Vm − b)
−

a
Vm

26 1 THE PROPERTIES OF GASES

(i) IfVm is 12% smaller than the molar volume of a perfect gas, it follows that
Vm = V○m(1 − 0.12) = 0.88V○m. �e compression factor is then computed
directly as

Z =
Vm

V○m
=
0.88 × V○m

V○m
= 0.88

(ii) From [1C.2–20] it follows that Vm = ZRT/p

Vm =
ZRT
p
=
0.88 × (8.2057 × 10−2 dm3 atmK−1 mol−1) × (250 K)

15 atm

= 1.2 dm3 mol−1

Because Z < 1, implying that Vm < V○m, attractive forces are dominant.

E1C.4(a) �e van der Waals equation of state in terms of the volume is given by [1C.5a–
23], p = nRT/(V−b)−an2/V 2. �emolarmass ofN2 isM = 2×14.01 gmol−1 =
28.02 gmol−1, so it follows that the amount in moles is

n = m/M = (92.4 kg)/(0.02802 kgmol−1) = 3.29... × 103 mol

�e pressure is found by substituting the given parameters into [1C.5a–23],
noting that the volume needs to be expressed in dm3

p =
nRT

V − nb
−
an2

V 2

=
(3.29... × 103 mol) × (8.2057 × 10−2 dm3 atmK−1 mol−1) × (500 K)

(1000 dm3) − (3.29... × 103 mol) × (0.0387 dm3 mol−1)

−
(1.352 atmdm6 mol−2) × (3.29... × 103 mol)2

(1000 dm3)2
= 140 atm

E1C.5(a) (i) �e pressure is computed from the equation of state for a perfect gas,
[1A.4–8], as p = nRT/V

p =
nRT
V
=
(10.0) × (8.2057 × 10−2 dm3 atmK−1 mol−1) × ([27 + 273.15] K)

4.860 dm3

= 50.7 atm

(ii) �e van der Waals equation of state in terms of the volume is given by
[1C.5a–23], p = nRT/(V − b) − an2/V 2. �is is used to calculate the
pressure

p =
nRT

V − nb
−
an2

V 2

=
(10.0 mol) × (8.2057 × 10−2 dm3 atmK−1 mol−1) × ([27 + 273.15] K)

(4.860 dm3) − (10.0 mol) × (0.0651 dm3 mol−1)

−
(5.507 atmdm6 mol−2) × (10.0 mol)2

(4.860 dm3)2
= 35.2... = 35.2 atm
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�e compression factor Z is given in terms of themolar volume and pres-
sure by [1C.2–20], Z = pVm/RT . �e molar volume is V/n

Z =
pVm

RT
=

pV
nRT

=
(35.2... atm) × (4.860 dm3)

(10.0 mol) × (8.2057 × 10−2 dm3 atmK−1 mol−1) × (300.15 K)
= 0.695

E1C.6(a) �e relation between the critical constants and the van der Waals parameters
is given by [1C.6–26]

Vc = 3b pc =
a

27b2
Tc =

8a
27Rb

All three critical constants are given, so the problem is over-determined: any
pair of the these expressions is su�cient to �nd values of a and b. It is con-
venient to use R = 8.2057 × 10−2 dm3 atmK−1 mol−1 and volumes in units of
dm3.
If the expressions for Vc and pc are used, a and b are found in the following
way

Vc = 3b hence b = Vc/3 = (0.0987 dm3 mol−1)/3 = 0.0329 dm3 mol−1

pc =
a

27b2
=

a
27(Vc/3)2

hence a = 27(Vc/3)2pc

a = 27(Vc/3)2pc = 27([0.0987 dm3 mol−1]/3)2 × (45.6 atm)
= 1.33 atmdm6 mol−2

�ere are three possible ways of choosing two of the expressions with which to
�nd a and b, and each choice gives a di�erent value. For a the values are 1.33,
1.74, and 2.26, giving an average of 1.78 atmdm6 mol−2 . For b the values are
0.0329, 0.0329, and 0.0429, giving an average of 0.0362 dm3 mol−1 .
In Section 1C.2(a) on page 23 it is argued that b = 4VmolecNA, where Vmolec is
the volume occupied by one molecule. �is volume is written in terms of the
radius r as 4πr3/3 so it follows that r = (3b/16πNA)

1/3.

r = (
3b

16πNA
)
1/3
= (

3 × (0.0362 dm3 mol−1)
16π × (6.0221 × 1023 mol−1)

)

1/3

= 1.53×10−9 dm = 153 pm

E1C.7(a) (i) In Section 1C.1(b) on page 20 it is explained that at the Boyle temperature
Z = 1 and dZ/dp = 0; this latter condition corresponds to the second
virial coe�cient, B or B′, being zero. �e task is to �nd the relationship
between the van derWaals parameters and the virial coe�cients, and the
starting point for this is the expressions for the product pVm is each case
([1C.5b–24] and [1C.3b–21])

van der Waals: p = RT
(Vm − b)

−
a
V 2
m

hence pVm =
RTVm

(Vm − b)
−

a
Vm
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(i) IfVm is 12% smaller than the molar volume of a perfect gas, it follows that
Vm = V○m(1 − 0.12) = 0.88V○m. �e compression factor is then computed
directly as

Z =
Vm

V○m
=
0.88 × V○m

V○m
= 0.88

(ii) From [1C.2–20] it follows that Vm = ZRT/p

Vm =
ZRT
p
=
0.88 × (8.2057 × 10−2 dm3 atmK−1 mol−1) × (250 K)

15 atm

= 1.2 dm3 mol−1

Because Z < 1, implying that Vm < V○m, attractive forces are dominant.

E1C.4(a) �e van der Waals equation of state in terms of the volume is given by [1C.5a–
23], p = nRT/(V−b)−an2/V 2. �emolarmass ofN2 isM = 2×14.01 gmol−1 =
28.02 gmol−1, so it follows that the amount in moles is

n = m/M = (92.4 kg)/(0.02802 kgmol−1) = 3.29... × 103 mol

�e pressure is found by substituting the given parameters into [1C.5a–23],
noting that the volume needs to be expressed in dm3

p =
nRT

V − nb
−
an2

V 2

=
(3.29... × 103 mol) × (8.2057 × 10−2 dm3 atmK−1 mol−1) × (500 K)

(1000 dm3) − (3.29... × 103 mol) × (0.0387 dm3 mol−1)

−
(1.352 atmdm6 mol−2) × (3.29... × 103 mol)2

(1000 dm3)2
= 140 atm

E1C.5(a) (i) �e pressure is computed from the equation of state for a perfect gas,
[1A.4–8], as p = nRT/V

p =
nRT
V
=
(10.0) × (8.2057 × 10−2 dm3 atmK−1 mol−1) × ([27 + 273.15] K)

4.860 dm3

= 50.7 atm

(ii) �e van der Waals equation of state in terms of the volume is given by
[1C.5a–23], p = nRT/(V − b) − an2/V 2. �is is used to calculate the
pressure

p =
nRT
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−
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V 2

=
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(i) From the tables in theResource section, forH2 pc = 12.8 atm, Tc = 33.23K,
and for NH3 pc = 111.3 atm, Tc = 405.5 K. Taking gas (1) as H2 and
gas (2) as NH3, the pressure and temperature of NH3 corresponding to
p(H2) = 1.0 atm and T(H2) = 298.15 K is calculated as

p(NH3) =
p(H2)

p(H2)
c
× p(NH3)

c =
1.0 atm
12.8 atm

× (111.3 atm) = 8.7 atm

T(NH3) =
T(H2)

T(H2)
c

× T(NH3)
c =

298.15 K
33.23 K

× (405.5 K) = 3.6 × 103 K

(ii) For Xe pc = 58.0 atm, Tc = 289.75 K.

p(Xe) =
p(H2)

p(H2)
c
× p(Xe)c =

1.0 atm
12.8 atm

× (58.0 atm) = 4.5 atm

T(Xe) =
T(H2)

T(H2)
c

× T(Xe)c =
298.15 K
33.23 K

× (289.75 K) = 2.6 × 103 K

(iii) For He pc = 2.26 atm, Tc = 5.2 K.

p(He) =
p(H2)

p(H2)
c
× p(He)

c =
1.0 atm
12.8 atm

× (2.26 atm) = 0.18 atm

T(He) =
T(H2)

T(H2)
c

× T(He)
c =

298.15 K
33.23 K

× (5.2 K) = 47 K

E1C.9(a) �e van der Waals equation of state in terms of the molar volume is given by
[1C.5b–24], p = RT/(Vm − b) − a/V 2

m. �is relationship is rearranged to �nd b

p =
RT

Vm − b
−

a
V 2
m

hence p +
a
V 2
m
=

RT
Vm − b

hence
pV 2

m + a
V 2
m

=
RT

Vm − b
hence

V 2
m

pV 2
m + a

=
Vm − b
RT

hence b = Vm −
RTV 2

m
pV 2

m + a

With the data given

b = Vm −
RTV 2

m
pV 2

m + a
= (5.00 × 10−4 m3 mol−1)

−
(8.3145 JK−1 mol−1) × (273 K) × (5.00 × 10−4 m3 mol−1)2

(3.0 × 106 Pa) × (5.00 × 10−4 m3 mol−1)2 + (0.50 m6 Pamol−2)

= 4.6 × 10−5 m3 mol−1

where 1 Pa = 1 kgm−1 s−2 and 1 J = 1 kgm2 s−2 have been used.
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virial: pVm = RT (1 +
B
Vm
)

�evan derWaals expression for pVm is rewritten by dividing the denom-
inator and numerator of the �rst fraction by Vm to give

pVm =
RT

(1 − b/Vm)
−

a
Vm

�e dimensionless parameter b/Vm is likely to be≪ 1, so the approxima-
tion (1 − x)−1 ≈ 1 + x is used to give

pVm = RT(1 + b/Vm) −
a
Vm
= RT [1 + 1

Vm
(b −

a
RT
)]

Comparison of this expression with the virial expansion shows that

B = b −
a
RT

It therefore follows that the Boyle temperature, when B = 0, is Tb = a/Rb.
For the van der Waals parameters from the Resource section

Tb =
a
Rb
=

6.260 atmdm6 mol−2

(8.2057 × 10−2 dm3 atmK−1 mol−1) × (5.42 × 10−2 dm3 mol−1)
= 1.41 × 103 K

(ii) In Section 1C.2(a) on page 23 it is argued that b = 4VmolecNA, where
Vmolec is the volume occupied by one molecule. �is volume is written
in terms of the radius r as 4πr3/3 so it follows that r = (3b/16πNA)

1/3.

r = (
3b

16πNA
)
1/3
= (

3 × (5.42 × 10−2 dm3 mol−1)
16π × (6.0221 × 1023 mol−1)

)

1/3

= 1.75 × 10−9 dm = 175 pm

E1C.8(a) �e reduced variables are de�ned in terms of the critical constants,[1C.8–26]

Vr = Vm/Vc pr = p/pc Tr = T/Tc

If the reduced pressure is the same for two gases (1) and (2) it follows that

p(1)

p(1)c
=
p(2)

p(2)c
hence p(2) =

p(1)

p(1)c
× p(2)c

and similarly

T(2) =
T(1)

T(1)c
× T(2)c

�ese relationships are used to �nd the pressure and temperature of gas (2)
corresponding to a particular state of gas (1); it is necessary to know the critical
constants of both gases.
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(i) From the tables in theResource section, forH2 pc = 12.8 atm, Tc = 33.23K,
and for NH3 pc = 111.3 atm, Tc = 405.5 K. Taking gas (1) as H2 and
gas (2) as NH3, the pressure and temperature of NH3 corresponding to
p(H2) = 1.0 atm and T(H2) = 298.15 K is calculated as
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p(H2)

p(H2)
c
× p(NH3)

c =
1.0 atm
12.8 atm

× (111.3 atm) = 8.7 atm

T(NH3) =
T(H2)

T(H2)
c
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(ii) For Xe pc = 58.0 atm, Tc = 289.75 K.
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E1C.9(a) �e van der Waals equation of state in terms of the molar volume is given by
[1C.5b–24], p = RT/(Vm − b) − a/V 2

m. �is relationship is rearranged to �nd b

p =
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hence p +
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V 2
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hence
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=
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hence

V 2
m
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=
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hence b = Vm −
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pV 2

m + a

With the data given
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m
pV 2

m + a
= (5.00 × 10−4 m3 mol−1)

−
(8.3145 JK−1 mol−1) × (273 K) × (5.00 × 10−4 m3 mol−1)2

(3.0 × 106 Pa) × (5.00 × 10−4 m3 mol−1)2 + (0.50 m6 Pamol−2)

= 4.6 × 10−5 m3 mol−1

where 1 Pa = 1 kgm−1 s−2 and 1 J = 1 kgm2 s−2 have been used.
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virial: pVm = RT (1 +
B
Vm
)

�evan derWaals expression for pVm is rewritten by dividing the denom-
inator and numerator of the �rst fraction by Vm to give

pVm =
RT

(1 − b/Vm)
−

a
Vm

�e dimensionless parameter b/Vm is likely to be≪ 1, so the approxima-
tion (1 − x)−1 ≈ 1 + x is used to give

pVm = RT(1 + b/Vm) −
a
Vm
= RT [1 + 1

Vm
(b −

a
RT
)]

Comparison of this expression with the virial expansion shows that

B = b −
a
RT

It therefore follows that the Boyle temperature, when B = 0, is Tb = a/Rb.
For the van der Waals parameters from the Resource section

Tb =
a
Rb
=

6.260 atmdm6 mol−2

(8.2057 × 10−2 dm3 atmK−1 mol−1) × (5.42 × 10−2 dm3 mol−1)
= 1.41 × 103 K

(ii) In Section 1C.2(a) on page 23 it is argued that b = 4VmolecNA, where
Vmolec is the volume occupied by one molecule. �is volume is written
in terms of the radius r as 4πr3/3 so it follows that r = (3b/16πNA)

1/3.

r = (
3b

16πNA
)
1/3
= (

3 × (5.42 × 10−2 dm3 mol−1)
16π × (6.0221 × 1023 mol−1)

)

1/3

= 1.75 × 10−9 dm = 175 pm

E1C.8(a) �e reduced variables are de�ned in terms of the critical constants,[1C.8–26]

Vr = Vm/Vc pr = p/pc Tr = T/Tc

If the reduced pressure is the same for two gases (1) and (2) it follows that

p(1)

p(1)c
=
p(2)

p(2)c
hence p(2) =

p(1)

p(1)c
× p(2)c

and similarly

T(2) =
T(1)

T(1)c
× T(2)c

�ese relationships are used to �nd the pressure and temperature of gas (2)
corresponding to a particular state of gas (1); it is necessary to know the critical
constants of both gases.
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�emolar volume is computed from the compression factor

Z =
Vm

V○m
=

Vm

RT/p

hence Vm =
ZRT
p
=
0.928... × (8.2057 × 10−2 dm3 atmK−1 mol−1) × (273 K)

100 atm

= 0.208 dm3 mol−1

P1C.5 In Section 1C.1(b) on page 20 it is explained that at the Boyle temperature
Z = 1 and dZ/dp = 0; this latter condition corresponds to the second virial
coe�cient, B or B′, being zero. �e Boyle temperature is found by setting the
given expression for B(T) to zero and solving for T

0 = a + be−c/T
2
hence − a/b = e−c/T

2

Taking logarithms gives ln(−a/b) = −c/T2 hence

T = (
−c

ln(−a/b)
)

1/2

= (
−1131 K2

ln[−(−0.1993 bar−1)/(0.2002 bar−1)]
)

1/2

= 501.0 K

P1C.7 (a) �e molar mass M of H2O is 18.02 gmol−1. �e mass density ρ is related
to the molar density ρm by ρm = ρ/M, and the molar volume is simply
the reciprocal of the molar density Vm = 1/ρm = M/ρ

Vm =
M
ρ
=
18.02 × 10−3 kgmol−1

133.2 kgm−3
= 1.352... × 10−4 m3 mol−1

�e molar volume is therefore 0.1353 dm3 mol−1

(b) �e compression factor Z is given by [1C.2–20], Z = pVm/RT

Z =
pVm

RT
=

(327.6 atm) × (0.1352... dm3 mol−1)
(8.2057 × 10−2 dm3 atmK−1 mol−1) × (776.4 K)

= 0.6957

(c) �e virial equation (up to the second term) in terms of the molar volume
is given by [1C.3b–21]

pVm = RT (1 +
B
Vm
)

Division of each side by p gives

Vm =
RT
p
(1 + B

Vm
)
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�e compression factor Z is de�ned in [1C.1–20] as Z = Vm/V○m, where V○m is
the molar volume of a perfect gas under the same conditions. �is volume is
computed from the equation of state for a perfect gas, [1A.4–8], as V○m = RT/p,
hence Z = pVm/RT , [1C.2–20]. With the data given

Z =
pVm

RT
=
(3.0 × 106 Pa) × (5.00 × 10−4 m3 mol−1)
(8.3145 JK−1 mol−1) × (273 K)

= 0.66

Solutions to problems

P1C.1 �e virial equation is given by [1C.3b–21], pVm = RT(1 + B/Vm + . . .), and
from the Resource section the second virial coe�cient B for N2 at 273 K is
−10.5 cm3 mol−1. �emolar mass of N2 is 2×14.01 = 28.02 gmol−1, hence the
molar volume is

Vm =
V
n
=

V
m/M

=
2.25 dm3

(4.56 g)/(28.02 gmol−1)
= 13.8... dm3 mol−1

�is is used to calculate the pressure using the virial equation. It is convenient
to use R = 8.2057 × 10−2 dm3 atmK−1 mol−1 and express all the volumes in
dm3

p =
RT
Vm
(1 + B

Vm
)

=
(8.2057 × 10−2 dm3 atmK−1 mol−1) × (273 K)

13.8... dm3 mol−1
(1 + −1.05 × 10

−2 dm3 mol−1

13.8... dm3 mol−1
)

= 1.62 atm

P1C.3 �e virial equation is [1C.3b–21], pVm = RT(1+B/Vm+C/V 2
m+ . . .). �e com-

pression factor is de�ned in [1C.1–20] as Z = Vm/V○m, and the molar volume of
a perfect gas, V○m is given by V○m = RT/p.
It follows that

Vm = (RT/p)(1 + B/Vm + C/V 2
m) = V

○
m(1 + B/Vm + C/V 2

m)

hence Z = Vm

V○m
= 1 +

B
Vm
+

C
V 2
m

To evaluate this expression, the molar volume is approximated by the molar
volume of a perfect gas under the prevailing conditions

V○m =
RT
p
=
(8.2057 × 10−2 dm3 atmK−1 mol−1) × (273 K)

100 atm
= 0.224... dm3 mol−1

�is value of the molar volume is then used to compute Z; note the conversion
of all the volume terms to dm3

Z = 1 + B
Vm
+

C
V 2
m

= 1 + −21.3 × 10
−3 dm3 mol−1

0.224... dm3 mol−1
+
1200 × 10−6 dm6 mol−2

(0.224... dm3 mol−1)2
= 0.928... = 0.929



SOLUTIONSMANUAL TO ACCOMPANY ATKINS’ PHYSICAL CHEMISTRY 31

�emolar volume is computed from the compression factor

Z =
Vm

V○m
=

Vm

RT/p

hence Vm =
ZRT
p
=
0.928... × (8.2057 × 10−2 dm3 atmK−1 mol−1) × (273 K)

100 atm

= 0.208 dm3 mol−1

P1C.5 In Section 1C.1(b) on page 20 it is explained that at the Boyle temperature
Z = 1 and dZ/dp = 0; this latter condition corresponds to the second virial
coe�cient, B or B′, being zero. �e Boyle temperature is found by setting the
given expression for B(T) to zero and solving for T

0 = a + be−c/T
2
hence − a/b = e−c/T

2

Taking logarithms gives ln(−a/b) = −c/T2 hence

T = (
−c

ln(−a/b)
)

1/2

= (
−1131 K2

ln[−(−0.1993 bar−1)/(0.2002 bar−1)]
)

1/2

= 501.0 K

P1C.7 (a) �e molar mass M of H2O is 18.02 gmol−1. �e mass density ρ is related
to the molar density ρm by ρm = ρ/M, and the molar volume is simply
the reciprocal of the molar density Vm = 1/ρm = M/ρ

Vm =
M
ρ
=
18.02 × 10−3 kgmol−1

133.2 kgm−3
= 1.352... × 10−4 m3 mol−1

�e molar volume is therefore 0.1353 dm3 mol−1

(b) �e compression factor Z is given by [1C.2–20], Z = pVm/RT

Z =
pVm

RT
=

(327.6 atm) × (0.1352... dm3 mol−1)
(8.2057 × 10−2 dm3 atmK−1 mol−1) × (776.4 K)

= 0.6957

(c) �e virial equation (up to the second term) in terms of the molar volume
is given by [1C.3b–21]

pVm = RT (1 +
B
Vm
)

Division of each side by p gives

Vm =
RT
p
(1 + B

Vm
)

30 1 THE PROPERTIES OF GASES

�e compression factor Z is de�ned in [1C.1–20] as Z = Vm/V○m, where V○m is
the molar volume of a perfect gas under the same conditions. �is volume is
computed from the equation of state for a perfect gas, [1A.4–8], as V○m = RT/p,
hence Z = pVm/RT , [1C.2–20]. With the data given

Z =
pVm

RT
=
(3.0 × 106 Pa) × (5.00 × 10−4 m3 mol−1)
(8.3145 JK−1 mol−1) × (273 K)

= 0.66

Solutions to problems

P1C.1 �e virial equation is given by [1C.3b–21], pVm = RT(1 + B/Vm + . . .), and
from the Resource section the second virial coe�cient B for N2 at 273 K is
−10.5 cm3 mol−1. �emolar mass of N2 is 2×14.01 = 28.02 gmol−1, hence the
molar volume is

Vm =
V
n
=

V
m/M

=
2.25 dm3

(4.56 g)/(28.02 gmol−1)
= 13.8... dm3 mol−1

�is is used to calculate the pressure using the virial equation. It is convenient
to use R = 8.2057 × 10−2 dm3 atmK−1 mol−1 and express all the volumes in
dm3

p =
RT
Vm
(1 + B

Vm
)

=
(8.2057 × 10−2 dm3 atmK−1 mol−1) × (273 K)

13.8... dm3 mol−1
(1 + −1.05 × 10

−2 dm3 mol−1

13.8... dm3 mol−1
)

= 1.62 atm

P1C.3 �e virial equation is [1C.3b–21], pVm = RT(1+B/Vm+C/V 2
m+ . . .). �e com-

pression factor is de�ned in [1C.1–20] as Z = Vm/V○m, and the molar volume of
a perfect gas, V○m is given by V○m = RT/p.
It follows that

Vm = (RT/p)(1 + B/Vm + C/V 2
m) = V

○
m(1 + B/Vm + C/V 2

m)

hence Z = Vm

V○m
= 1 +

B
Vm
+

C
V 2
m

To evaluate this expression, the molar volume is approximated by the molar
volume of a perfect gas under the prevailing conditions

V○m =
RT
p
=
(8.2057 × 10−2 dm3 atmK−1 mol−1) × (273 K)

100 atm
= 0.224... dm3 mol−1

�is value of the molar volume is then used to compute Z; note the conversion
of all the volume terms to dm3

Z = 1 + B
Vm
+

C
V 2
m

= 1 + −21.3 × 10
−3 dm3 mol−1

0.224... dm3 mol−1
+
1200 × 10−6 dm6 mol−2

(0.224... dm3 mol−1)2
= 0.928... = 0.929



SOLUTIONSMANUAL TO ACCOMPANY ATKINS’ PHYSICAL CHEMISTRY 33

�e two values of a are not the same; their average is 5.849 atmdm6 mol−2.

From Table 1C.4 on page 25 the expression for the pressure exerted by a Di-
eterici gas is

p =
nRT exp(−a/[RTV/n])

V − nb
With the parameters given the exponential term evaluates to

exp(
−(5.849 atmdm6 mol−2)

(8.2057 × 10−2 dm3 atmK−1 mol−1)×(298.15K)×(1.0 dm3)/(1.0 mol)
)

= 0.787...

and hence the pressure evaluates to

p =
(1.0 mol)×(8.2057 × 10−2 dm3 atmK−1 mol−1)×(298.15K)×(0.787...)

(1.0 dm3) − (1.0 mol)×(0.0594 dm3 mol−1)
= 20.48 atm

P1C.11 �e van der Waals equation in terms of the molar volume is given by [1C.5b–
24], p = RT/(Vm − b) − a/V 2

m. Multiplication of both sides by Vm gives

pVm =
RTVm

(Vm − b)
−

a
Vm

and then division of the numerator and denominator of the �rst fraction byVm
gives

pVm =
RT

(1 − b/Vm)
−

a
Vm

�eapproximation (1−x)−1 ≈ 1+x+x2 is the used to approximate 1/(1−b/Vm)
to give

pVm = RT (1 +
b
Vm
+

b2

V 2
m
) −

a
Vm

�e terms in 1/Vm and 1/V 2
m are gathered together to give

pVm = RT (1 +
1
Vm
[b −

a
RT
] +

b2

V 2
m
)

�is result is then compared with the virial equation in terms of the molar
volume, [1C.3b–21]

pVm = RT (1 +
B
Vm
+

C
V 2
m
)

�is comparison identi�es the virial coe�cients as

B = b −
a
RT

C = b2

32 1 THE PROPERTIES OF GASES

�equantity RT/p is recognised as themolar volume of a perfect gas,V○m,
so it follows that

Vm = V○m (1 +
B
Vm
) hence

Vm

V○m
= Z = (1 +

B
Vm
)

In Problem P1C.4 it is shown that B is related to the van der Waals con-
stants by B = b − a/RT ; using this, it is then possible to compute the
compression factor

B = b −
a
RT
= (0.03049 dm3 mol−1)

−
(5.464 atmdm6 mol−2)

(8.2057 × 10−2 dm3 atmK−1 mol−1) × (776.4 K)
= −0.552... dm3 mol−1

Z = 1 + B
Vm
= 1 + −0.552... dm

3 mol−1

0.1352... dm3 mol−1
= 0.5914

P1C.9 According to Table 1C.4 on page 25, for the Dieterici equation of state the
critical constants are given by

pc =
a

4e2b2
Vc = 2b Tc =

a
4bR

From the Resource section the values for Xe are Tc = 289.75 K, pc = 58.0 atm,
Vc = 118.8 cm3 mol−1. �e coe�cient b is computed directly from Vc

b = Vc/2 = (118.8 × 10−3 dm3 mol−1)/2 = 0.0594 dm3 mol−1

�e expressions for pc and Vc are combined to eliminate b

pc =
a

4e2b2
=

a
4e2V 2

c /4

�is is then rearranged to �nd a

a = pce2V 2
c = (58.0 atm) × e

2 × (118.8 × 10−3 dm3 mol−1)2

= 6.049 atmdm6 mol−2

Alternatively, the expressions for Tc and Vc are combined to eliminate b

Tc =
a

4bR
=

a
4RVc/2

�is is then rearranged to �nd a

a = 2TcVcR

= 2 × (289.75 K) × (118.8 × 10−3 dm3 mol−1)

× (8.2057 × 10−2 dm3 atmK−1 mol−1) = 5.649 atmdm6 mol−2
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Vm = 3C/B T = B2/3CR p = B3/27C2

P1C.15 �e virial equation in terms of the pressure, [1C.3a–21], is (up to the second
term)

pVm = RT (1 + B′p)

�e mass density ρ is given by m/V , and the mass m can be written as nM,
where n is the amount in moles and M is the molar mass. It follows that
ρ = nM/V = M/Vm, where Vm is the molar volume. Rearranging gives Vm =
M/ρ: measurements of the mass density therefore lead to values for the molar
volume.
With this substitution for the molar volume the virial equation becomes

pM
ρ
= RT (1 + B′p) hence p

ρ
=
RT
M
(1 + B′p)

�erefore a plot of p/ρ against p is expected to be a straight line whose slope is
related to B′; such a plot is shown in Fig. 1.5.

p/kPa ρ/(kgm−3) (p/ρ)/(kPa kg−1 m3)

12.22 0.225 54.32
25.20 0.456 55.26
36.97 0.664 55.68
60.37 1.062 56.85
85.23 1.468 58.06
101.30 1.734 58.42

0 20 40 60 80 100
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g−

1
m

3 )

Figure 1.5

�e data fall on a reasonable straight line, the equation of which is

(p/ρ)/(kPa kg−1 m3) = 0.04610 × (p/kPa) + 53.96
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From the given valueC = 1200 cm6 mol−2 it follows that b =
√
C = 34.64 cm3 mol−1.

Expressed in the usual units this is b = 0.03464 dm3 mol−1 . �e value of a is
found by rearranging B = b − a/RT to

a = RT(b − B) = (8.2057 × 10−2 dm3 atmK−1 mol−1) × (273 K)×
[(0.03464 dm3 mol−1) − (−21.7 × 10−3 dm3 mol−1)]

= 1.262 atmdm6 mol−2

P1C.13 In Section 1C.2(b) on page 24 it is explained that critical behaviour is associated
with oscillations in the isotherms predicted by a particular equation of state,
and that at the critical point there is a point of in�exion in the isotherm. At this
point it follows that

dp
dVm

= 0 d2p
dV 2

m
= 0

�e procedure is �rst to �nd expressions for the �rst and second derivatives.
�en these are both set to zero give two simultaneous equations which can be
solved for the critical pressure and volume.

dp
dVm

= −
RT
V 2
m
+
2B
V 3
m
−
3C
V 4
m
= 0 d2p

dV 2
m
=
2RT
V 3
m
−
6B
V 4
m
+
12C
V 5
m
= 0

�e �rst of these equations is multiplied through by V 4
m and the second by V 5

m
to give

−RTV 2
m + 2BVm − 3C = 0 2RTV 2

m − 6BVm + 12C = 0

�e �rst equation is multiplied by 2 and added to the second, thus eliminating
the terms in V 2

m and giving

4BVm − 6C − 6BVm + 12C = 0 hence Vm = 3C/B

�is expression for Vm is then substituted into −RTV 2
m+2BVm−3C = 0 to give

−RT
(3C)2

B2 + 2B
3C
B
− 3C = 0

A term 3C is cancelled and the equation is multiplied through by B2 to give

−RT(3C) + 2B2 − B2 = 0 hence T = B2/3RC

Finally the pressure is found by substituting Vm = 3C/B and T = B2/3RC into
the equation of state

p =
RT
Vm
−

B
V 2
m
+

C
V 3
m

=
B2R
3RC

B
3C
−

B3

9C2 +
CB3

27C3 =
B3

9C2 −
B3

9C2 +
B3

27C2 =
B3

27C2

In summary, the critical constants are
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�e data fall on a reasonable straight line, the equation of which is

(p/ρ)/(kPa kg−1 m3) = 0.04610 × (p/kPa) + 53.96
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From the given valueC = 1200 cm6 mol−2 it follows that b =
√
C = 34.64 cm3 mol−1.

Expressed in the usual units this is b = 0.03464 dm3 mol−1 . �e value of a is
found by rearranging B = b − a/RT to

a = RT(b − B) = (8.2057 × 10−2 dm3 atmK−1 mol−1) × (273 K)×
[(0.03464 dm3 mol−1) − (−21.7 × 10−3 dm3 mol−1)]

= 1.262 atmdm6 mol−2
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with oscillations in the isotherms predicted by a particular equation of state,
and that at the critical point there is a point of in�exion in the isotherm. At this
point it follows that

dp
dVm

= 0 d2p
dV 2

m
= 0

�e procedure is �rst to �nd expressions for the �rst and second derivatives.
�en these are both set to zero give two simultaneous equations which can be
solved for the critical pressure and volume.

dp
dVm

= −
RT
V 2
m
+
2B
V 3
m
−
3C
V 4
m
= 0 d2p

dV 2
m
=
2RT
V 3
m
−
6B
V 4
m
+
12C
V 5
m
= 0

�e �rst of these equations is multiplied through by V 4
m and the second by V 5

m
to give

−RTV 2
m + 2BVm − 3C = 0 2RTV 2

m − 6BVm + 12C = 0

�e �rst equation is multiplied by 2 and added to the second, thus eliminating
the terms in V 2

m and giving

4BVm − 6C − 6BVm + 12C = 0 hence Vm = 3C/B

�is expression for Vm is then substituted into −RTV 2
m+2BVm−3C = 0 to give

−RT
(3C)2

B2 + 2B
3C
B
− 3C = 0

A term 3C is cancelled and the equation is multiplied through by B2 to give

−RT(3C) + 2B2 − B2 = 0 hence T = B2/3RC

Finally the pressure is found by substituting Vm = 3C/B and T = B2/3RC into
the equation of state

p =
RT
Vm
−

B
V 2
m
+

C
V 3
m

=
B2R
3RC

B
3C
−

B3

9C2 +
CB3

27C3 =
B3

9C2 −
B3

9C2 +
B3

27C2 =
B3

27C2

In summary, the critical constants are
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p/MPa Vm/(dm3 mol−1) (pVm)/(MPa dm3 mol−1) (1/Vm)/(dm−3 mol)
0.400 0 6.220 8 2.488 3 0.160 75
0.500 0 4.973 6 2.486 8 0.201 06
0.600 0 4.142 3 2.485 4 0.241 41
0.800 0 3.103 1 2.482 5 0.322 26
1.000 2.479 5 2.479 5 0.403 31
1.500 1.648 3 2.472 5 0.606 69
2.000 1.232 8 2.465 6 0.811 16
2.500 0.983 57 2.458 9 1.016 7
3.000 0.817 46 2.452 4 1.223 3
4.000 0.609 98 2.439 9 1.639 4
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�e data fall on a reasonable straight line, the equation of which is

(pVm)/(MPa dm3 mol−1) = −0.03302 × (1/Vm)/(dm−3 mol) + 2.4931

�e slope is BRT

BRT = (−0.03302 MPa dm6 mol−2)

It is convenient to convert to atm giving BRT = (−0.3259 atm dm6 mol−2)
hence

B =
(−0.3259 atm dm6 mol−2)

RT

=
(−0.3259 atm dm6 mol−2)

(8.2057 × 10−2 dm3 atmK−1 mol−1) × (300 K)

= −0.01324 dm3 mol−1
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�e slope is B′RT/M
B′RT
M
= 0.04610 kg−1 m3

For methoxymethane, CH3OCH3, M = 2 × 12.01 + 6 × 1.0079 + 16.00 =
46.0674 gmol−1.

B′ =
(0.04610 kg−1 m3) × (46.0674 × 10−3 kgmol−1)

(8.3145 JK−1 mol−1) × (298.15K)
= 8.57 × 10−7 m3 J−1

�e units of the result can be simpli�ed by noting that 1 J = 1 kgm2 s−2, so
1m3 J−1 = 1m kg−1 s2. Recall that 1 Pa = 1 kgm−1 s−2, so the units of the B′ are
Pa−1, an inverse pressure, as expected: B′ = 8.57×10−7 Pa−1 or B′ = 0.0868 atm−1 .
�e virial coe�cient B is found using the result from Problem P1C.14, B = B′RT

B = B′RT

= (0.0868 atm−1) × (8.2057 × 10−2 dm3 atmK−1 mol−1) × (298.15K)

= 2.12 dm3 mol−1

P1C.17 A gas can only be lique�ed by the application of pressure if the temperature is
below the critical temperature, which for N2 is 126.3 K.

P1C.19 �e compression factor is given by [1C.1–20], Z = Vm/V○m = Vmp/RT . �e
given equation of state is rearranged to give an expression for Vm a�er putting
n = 1

p(V − nb) = nRT becomes p(Vm − b) = RT hence Vm =
RT
p
+ b

It follows that the compression factor is given by

Z =
Vmp
RT
=
(RT/p + b)p

RT
= 1 + bp

RT

If Vm = 10b it follows from the previous equation that

Vmp
RT
=
10bp
RT

= 1 + bp
RT

hence b =
RT
9p

With this expression for b the compression factor is computed from Z = 1 +
bp/RT as

Z = 1 + bp
RT
= 1 + RT

9p
p
RT
= 1 + 1

9
= 1.11

P1C.21 �e virial equation in terms of the molar volume, [1C.3b–21], is (up to the third
term)

pVm = RT (1 +
B
Vm
+

C
V 2
m
)

For part (a) only the �rst two terms are considered, and it then follows that a
plot of pVm against 1/Vm is expected to be a straight line with slope BRT ; such
a plot is shown in Fig. 1.6.
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Answers to integrated activities

I1.1 �e Maxwell–Boltzmann distribution of speeds in three dimensions is given
by [1B.4–14]

f (υ) = 4π (
M

2πRT
)
3/2

υ2e−Mυ2/2RT

withM themolarmass. �emost probable speed is found by taking the deriva-
tive of f (υ)with respect to υ, and setting this to zero; calculating the derivative
requires the use of the chain rule

d f (υ)
dυ

= 4π ( M
2πRT

)
3/2
[2υe−Mυ2/2RT + υ2 (

−2Mυ
2RT

) e−Mυ2/2RT] = 0

�e multiplying constant and factors of υ and e−Mυ2/2RT are cancelled (these
do not correspond to maxima) leaving

2 − Mυ2

RT
= 0 hence υ = (

2RT
M
)
1/2

Inspection of the form of the distribution shows that this is a maximum.
�e average kinetic energy is calculated from the average of the square of the
speed: ⟨Ek⟩ =

1
2m⟨υ

2⟩. �e task is therefore to calculate this average using the
Maxwell–Boltzmann distribution: the required integral is

⟨υ2⟩ = ∫
∞

0
υ2 f (υ)dυ = 4π ( M

2πRT
)
3/2

∫
∞

0
υ4e−Mυ2/2RT dυ

�is integral is of the form of G.8 from the Resource section

∫
∞

0
x2me−ax

2
dx = (2m − 1)!!

2m+1am
(
π
a
)
1/2

with m = 2, (2m − 1)!! = 3 × 1 = 3, 2m+1 = 8, am = a2 and a = M/2RT .

⟨υ2⟩ = 4π (
M

2πRT
)
3/2
×
3
8
× (

4R2T2

M2 ) × (
2RTπ
M
)
1/2

=
3RT
M
=
3kT
m

To go to the last line from the previous one involves a deal of careful algebra,
and for the �nal step R = NAk andM = mNA have been used, withm the mass
of the molecule.
With this result

⟨Ek⟩ =
1
2
m⟨υ2⟩ =

1
2
m (

3kT
m
) =

3
2
kT

which is in accord with the equipartition principle.
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For part (b) the data points are �tted to polynomial of order 2 in 1/Vm using
mathematical so�ware; the data are a slightly better �t to such a function (see
the dashed line in the graph above) which is

(pVm)/(MPa dm3 mol−1) =
0.002652 × (1/Vm)

2/(dm−6 mol2) − 0.03748 × (1/Vm)/(dm−3 mol) + 2.494

�e coe�cient of the term in (1/Vm)
2 is CRT

CRT = (0.002652 MPa dm9 mol−3)

It is convenient to convert to atm giving CRT = (0.02617 atm dm9 mol−3)
hence

C =
(0.02617 atm dm9 mol−3)

RT

=
(0.02617 atm dm9 mol−3)

(8.2057 × 10−2 dm3 atmK−1 mol−1) × (300 K)
= 1.063 × 10−3 dm6 mol−2

P1C.23 �e van der Waals equation of state in terms of the molar volume is given by
[1C.5b–24], p = RT/(Vm −b)− a/V 2

m. �is equation is a cubic in Vm, as is seen
bymultiplying both sides by (Vm−b)V 2

m and then gathering the terms together

pV 3
m − V

2
m(pb + RT) + aVm − ab = 0

From the Resource section the van der Waals parameters for Cl2 are

a = 6.260 atmdm6 mol−2 b = 5.42 × 10−2 dm3 mol−1

It is convenient to convert the pressure to atm

p = (150 × 103 Pa) × (1 atm)/(1.01325 × 105 Pa) = 1.4804 atm

and to use R = 8.2057 × 10−2 dm3 atmK−1 mol−1; inserting all of these values
and the temperature gives the polynomial

1.4804V 3
m − 20.5946V

2
m + 6.260Vm − 0.3393 = 0

�e roots of this polynomial are found numerically using mathematical so�-
ware and of these roots only Vm = 13.6 dm3 mol−1 is a physically plausible
value for the molar volume.
�e molar volume of a perfect gas under corresponding conditions is

Vm =
RT
p
=
(8.2057 × 10−2 dm3 atmK−1 mol−1) × (250 K)

1.48 atm
= 13.9 dm3 mol−1

�emolar volume of the van derWaals gas is about 2% smaller than that of the
perfect gas.
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2 Internal energy

2A Internal energy

Answers to discussion questions

D2A.1 In physical chemistry, the universe is considered to be divided into two parts:
the system and its surroundings. In thermodynamics, the system is the object
of interest which is separated from its surroundings, the rest of the universe, by
a boundary. �e characteristics of the boundary determine whether the system
is open, closed, or isolated.
An open system has a boundary that permits the passage of both matter and
energy. A closed system has a boundary that allows the passage of energy but
not ofmatter. Closed systems can be either adiabatic or diathermic. �e former
do not allow the transfer of energy as a result of a temperature di�erence, but
the latter do. An isolated system is one with a boundary that allows neither the
transfer of matter nor energy between the system and the surroundings.

D2A.3 Table 2A.1 on page 39 lists four varieties of work: expansion, surface expan-
sion, extension, and electrical. �ere is also work associated with processes in
magnetic and gravitational �elds which we will not describe in detail.

D2A.5 An isothermal expansion of a gas may be achieved by making sure that the gas
and its container are in thermal contact with a large ‘bath’ which is held at a
constant temperature – that is, a thermostat.

Solutions to exercises

E2A.1(a) �e chemist’s toolkit 7 in Topic 2A gives an explanation of the equipartition
theorem. �e molar internal energy is given by

Um =
1
2 × (νt + νr + 2νv) × RT

where νt is the number of translational degrees of freedom, νr is the number
of rotational degrees of freedom and νv is the number of vibrational degrees of
freedom. As each gas molecule can move independently along the x, y and z
axis, the number of translational degrees of freedom is three.

(i) Molecular iodine is a diatomic molecule, therefore it has two degrees of
rotational freedom. On account of its heavy atoms, molecular iodine is

40 1 THE PROPERTIES OF GASES

I1.3 In Section 1C.2(a) on page 23 it is argued that b = 4VmolecNA, where Vmolec is
the volume occupied by one molecule. �e collision cross-section σ is de�ned
in terms of a collision diameter d as σ = πd2, and in turn the diameter is
interpreted as twice the radius of the colliding spheres: d = 2r. It follows that
r = (σ/4π)1/2

b = 4VmolecNA

= 4(
4
3
πr3)NA =

16πNA

3
(
σ
4π
)
3/2

=
16π(6.0221 × 1023 mol−1)

3
(
0.46 × 10−18 m2

4π
)

3/2

= 7.1 × 10−5 m3 mol−1 = 0.071 dm3 mol−1
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